I want to extract whatever come after -
My data in column A looks like
Column A
Column B
001-3
5
002-14
6
what I want is
Column A
Column B
Column C
001-3
3
5
002-14
14
6
Is there any function like scan for SAS in python, so I can extract the what come after "-" in column A and place it at column B, after move B to C
# reassign Column B to Column C
df['Column C'] = df['Column B']
#split from right and limit to only single split, then take the right value to create column B
df['Column B']=df['Column A'].str.rsplit('-',n=1,expand=True)[1]
df
Column A Column B Column C
0 001-3 3 5
1 002-14 14 6
Related
Hi I have 2 data sets:
Data A:
Column A Column B Column C
Hello NaN John
Bye NaN Mike
Data B:
Column A Column B
Hello 123
Raw data:
a = pd.DataFrame([['Hello', np.nan,'John'],['Bye',np.nan,'Mike']], columns=['Column A','Column B','Column C'])
b = pd.DataFrame([['Hello', 123]], columns=['Column A','Column B'])
I want to merge Data A & B using left join (as Data A should be the main data and only bring in if they have matching Column A on Data B), and want to bring in Data B's Column B's numeric onto Data A's Column B.
The columns match but my script below results in two Column B's.
df=a.merge(b, on ='Column A', how='left')
df:
Column A Column B_x Column C Column B_y
Hello NaN John 123
Bye NaN Mike
I want the following result:
Column A Column B Column C
Hello 123 John
Bye NaN Mike
Please note I need to effectively insert Column B's data correlating to Column A, not just push Data B into Data A in exact row order. I need the code to find the match for Column A regardless of which row it's located in and insert them appropriately.
You don't need a merge for this as a merge will bring the columns of the two dataframes together. Since your dataframes follow the same structure, fillna or update:
a.fillna(b, inplace = True) # not in place unless you specify inplace=True
a.update(b) # modifies NA in place using non-NA values from another DataFrame
print(a)
Column A Column B Column C
0 Hello 123.0 John
1 Bye NaN Mike
I have a dataframe df which has 4 columns 'A','B','C','D'
I have to search for a substring in each column and return the complete dataframe in the search order for example if I get the substring in column B row 3,4,5 then my final df would be having
3 rows. For this I am using df[df['A'].str.contains('string_to _search') and it's working fine but one of the column consist each element in the column as list of strings like in column B
A B C D
0 asdfg [asdfgh, cvb] asdfg nbcjsh
1 fghjk [ertyu] fghhjk yrewf
2 xcvb [qwerr, hjklk, bnm] cvbvb gjfsjgf
3 ertyu [qwert] ertyhhu ertkkk
so df[df['A'].str.contains('string_to _search') is not working for column B pls suggest how can I search in this column and maintain the order of complete dataframe.
There are lists in column B, so need in statement:
df1 = df[df['B'].apply(lambda x: 'cvb' in x)]
print (df1)
A B C D
0 asdfg [asdfgh, cvb] asdfg nbcjsh
If want use str.contains then is possible use str.join first, so is possible search also substrings:
df1 = df[df['B'].str.join(' ').str.contains('er')]
print (df1)
A B C D
1 fghjk [ertyu] fghhjk yrewf
2 xcvb [qwerr, hjklk, bnm] cvbvb gjfsjgf
3 ertyu [qwert] ertyhhu ertkkk
If want search in all columns:
df2 = (df[df.assign(B = df['B'].str.join(' '))
.apply(' '.join, axis=1)
.str.contains('g')]
)
print (df2)
A B C D
0 asdfg [asdfgh, cvb] asdfg nbcjsh
1 fghjk [ertyu] fghhjk yrewf
2 xcvb [qwerr, hjklk, bnm] cvbvb gjfsjgf
I have a pandas DataFrame which contains information in columns which I would like to extract into a new column.
It is best explained visually:
df = pd.DataFrame({'Number Type 1':[1,2,np.nan],
'Number Type 2':[np.nan,3,4],
'Info':list('abc')})
The Table shows the initial DataFrame with Number Type 1 and NumberType 2 columns.
I would like to extract the types and create a new Type column, refactoring the DataFrame accordingly.
basically, Numbers are collapsed into the Number columns, and the types extracted into the Type column. The information in the Info column is bound to the numbers (f.e. 2 and 3 have the same information b)
What is the best way to do this in Pandas?
Use melt with dropna:
df = df.melt('Info', value_name='Number', var_name='Type').dropna(subset=['Number'])
df['Type'] = df['Type'].str.extract('(\d+)')
df['Number'] = df['Number'].astype(int)
print (df)
Info Type Number
0 a 1 1
1 b 1 2
4 b 2 3
5 c 2 4
Another solution with set_index and stack:
df = df.set_index('Info').stack().rename_axis(('Info','Type')).reset_index(name='Number')
df['Type'] = df['Type'].str.extract('(\d+)')
df['Number'] = df['Number'].astype(int)
print (df)
Info Type Number
0 a 1 1
1 b 1 2
2 b 2 3
3 c 2 4
I have two pandas dataframes with names df1 and df2 such that
`
df1: a b c d
1 2 3 4
5 6 7 8
and
df2: b c
12 13
I want the result be like
result: b c
2 3
6 7
Here it should be noted that a b c d are the column names in pandas dataframe. The shape and values of both pandas dataframe are different. I want to match the column names of df2 with that of column names of df1 and select all the rows of df1 the headers of which are matched with the column names of df2.. df2 is only used to select the specific columns of df1 maintaining all the rows. I tried some code given below but that gives me an empty index.
df1.columns.intersection(df2.columns)
The above code is not giving me my resut as it gives index headers with no values. I want to write a code in which I can give my two dataframes as input and it compares the columns headers for selection. I don't have to hard code column names.
I believe you need:
df = df1[df1.columns.intersection(df2.columns)]
Or like #Zero pointed in comments:
df = df1[df1.columns & df2.columns]
Or, use reindex
In [594]: df1.reindex(columns=df2.columns)
Out[594]:
b c
0 2 3
1 6 7
Also as
In [595]: df1.reindex(df2.columns, axis=1)
Out[595]:
b c
0 2 3
1 6 7
Alternatively to intersection:
df = df1[df1.columns.isin(df2.columns)]
I would like to know how to make a new row based on the column names row in a python dataframe, and append it to the same dataframe.
example
df = pd.DataFrame(np.random.randn(10, 5),columns=['abx', 'bbx', 'cbx', 'acx', 'bcx'])
I want to create a new row based on the column names that gives:
b | b | b | c | c |by taking the middle char of the column name.
the idea is to use that new row, later, for multi-indexing the columns.
I'm assuming this is what you want as you've not responded, we can append a new row by creating a dict from zipping the df columns and a list comprehension of the middle character (assuming that column name lengths are 3):
In [126]:
df.append(dict(zip(df.columns, [col[1] for col in df])), ignore_index=True)
Out[126]:
abx bbx cbx acx bcx
0 -0.373421 -0.1005462 -0.8280985 -0.1593167 1.335307
1 1.324328 -0.6189612 -0.743703 0.9419248 1.282682
2 0.3730312 -0.06697892 1.113707 -0.9691056 1.779643
3 -0.6644958 1.379606 -0.3751724 -1.135034 0.3287292
4 0.4406139 -0.5767996 -0.2267589 -1.384412 -0.03038372
5 -1.242734 -0.838923 -0.6724592 1.405247 -0.3716862
6 -1.682637 -1.69309 -1.291833 1.781704 0.6321988
7 -0.5793783 -0.6809975 1.03502 -0.6498381 -1.124236
8 1.589016 1.272961 -1.968225 0.5515182 0.3058628
9 -2.275342 2.892237 2.076253 -0.1422845 -0.09776171
10 b b b c c
ix --- lets you read the entire row-- you just say which ever row you want.
then you get your columns and assign them to the raw you want.
See the example below.
virData = DataFrame(df)
virData.columns = virData.ix[1].values
virData.columns