Overlapping charts in `matplotlib.animation.FuncAnimation` overwrite the alpha parameter - python

I am trying to plot a random walk in two ways:
static using plot method from matplotlib.pyplot,
animated using FuncAnimation from matplotlib.animation.
The first one works pretty well, you can see an example of a really simple Brownian motion below.
I tried to implement the code which would be capable of animating the random walk however I struggle with colors and the alpha parameter.
First of all the alpha parameter does not work. After successive iterations, the points overlap losing their transparency. In addition, the colors of the individual points change in each iteration, making the animation very unreadable.
You can see one animation below. The paths are the same as in the figure above.
The code I used to create the animation.
import os
from datetime import datetime
from matplotlib import pyplot as plt
from matplotlib.animation import FuncAnimation
from matplotlib.animation import PillowWriter
class Plotter:
def __init__(self, paths, link, annotate, grid, save, alpha, cmap):
self._paths = paths
self._link = link
self._annotate = annotate
self._alpha = alpha
self._cmap = cmap
self._fig, self._ax = plt.subplots()
self._animation = None
if grid:
self._ax.grid()
self._plot()
if save:
self._check_path()
self._filename = self._create_filename()
self._save()
def _plot(self):
self._animation = FuncAnimation(
self._fig, self._anim, interval=500, frames=len(self._paths[0][0]), repeat=False,
)
def _anim(self, frame):
self._ax.set_title(f'Frame: {frame}')
for path in self._paths:
x, y = path
if self._link:
self._ax.plot(x[:frame+1], y[:frame+1], linestyle='--', marker='o', alpha=self._alpha)
else:
self._ax.scatter(x[:frame+1], y[:frame+1], alpha=self._alpha, cmap=self._cmap)
def _save(self):
self._animation.save(self._filename, dpi=300, writer=PillowWriter(fps=25))
#staticmethod
def _check_path():
if not os.path.exists('figures/'):
os.mkdir('figures/')
#staticmethod
def _create_filename():
filename = 'figures/{name}.gif'
name = datetime.now().strftime("%d-%m-%Y %H:%M:%S")
return filename.format(name=name)
And that's how I created the .gif.
paths = [
(
[0, -0.6655408436280401, 0.10568259609257569, -0.26149279371869266, -0.5009666521908381, 0.3639625899869371, -0.49976435812228837, -0.48682212081220344, -1.2885433457534117, -0.9850803395821125, -0.018343580936876158],
[0, -0.7463614308516193, -1.3829259649135648, -0.45277423905538894, 0.5181285733354615, 1.0200223928090424, 1.523982469709905, 2.5238987154492216, 3.1215968645836893, 4.074440085625576, 4.330213499967454]),
(
[0, 0.06636040923368702, 0.05255193650063124, 0.597356910675901, -0.2793019906386772, -0.894506810533089, 0.06788127670582911, -0.3820663494179474, -0.3801418070740879, 0.6063698370900061, -0.3466678114238062],
[0, 0.9977957186149565, 1.9977003771103456, 1.1591375946582005, 1.6402500251210983, 2.4286173440649295, 2.700295774457584, 3.5933507188734235, 2.593352570806755, 2.4296614716942626, 2.732513317512087]
)
]
Plotter(paths=paths, link=True, annotate=False, grid=True, save=True, alpha=0.5, cmap='Pastel1')
Is it possible to set fixed colours for individual points and a fixed value for the alpha parameter?

A way to approach this is by creating two empty plots (one for each path) in your init function when and update the plots at each frame. You can fix the values for alpha and color while doing that.
Following that, it's also a good idea to fix the limits of your plot to prevent the plot from jumping from frame to frame.
At each frame, you can then update your plots with the values from your paths variable by using the set_data function (see doc here).
See the code you provided with the edit I suggested:
import os
from datetime import datetime
from matplotlib import pyplot as plt
from matplotlib.animation import FuncAnimation
from matplotlib.animation import PillowWriter
import numpy as np
class Plotter:
def __init__(self, paths, link, annotate, grid, save, alpha, cmap):
self._paths = paths
self._link = link
self._annotate = annotate
self._alpha = alpha
self._cmap = cmap
self._fig, self._ax = plt.subplots()
self._animation = None
#Create a list of two empty placeholder plots and initialize alpha and color
self._lns=[self._ax.plot([],[], linestyle='--', marker='o',alpha=self._alpha,color='tab:blue'),self._ax.plot([],[], linestyle='--', marker='o',alpha=self._alpha,color='tab:orange')]
self._ax.set_xlim([-2,2]) #set xlim
self._ax.set_ylim([-2,5]) #set ylim
if grid:
self._ax.grid()
self._plot()
if save:
self._check_path()
self._filename = self._create_filename()
self._save()
def _plot(self):
self._animation = FuncAnimation(self._fig, self._anim, interval=500, frames=len(self._paths[0][0]), repeat=True)
def _anim(self, frame):
self._ax.set_title(f'Frame: {frame}')
for i,path in enumerate(self._paths):
x, y = path
if self._link:
self._lns[i][0].set_data(x[:frame+1], y[:frame+1]) #update values of the plots
def _save(self):
self._animation.save(self._filename, dpi=300, writer=PillowWriter(fps=2))
#staticmethod
def _check_path():
if not os.path.exists('figures/'):
os.mkdir('figures/')
#staticmethod
def _create_filename():
filename = 'figures/{name}.gif'
name = datetime.now().strftime("%d-%m-%Y %H:%M:%S")
return filename.format(name=name)
And the output gives:

Related

How to draw animation by taking snapshot with matplotlib?

In my project, I have many polygons to draw for each time step.
At each step, the number of polygons varies, thus it is difficult to keep Axes.patchs and translate them to make the animation.
I want to create animation with final figures (show after calling matplotlib.pyplot.show()), how to do this?
We take the sin curve as example:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
fig = plt.figure()
ims = []
x = np.linspace(0, 2 * np.pi, 100)
y = np.sin(x)
z = np.cos(x)
for i in range(1,100):
tmpx = x[:i]
tmpy = y[:i]
tmpz = z[:i]
plt.plot(tmpx, tmpz)
im = plt.plot(tmpx, tmpy)
ims.append(im)
ani = animation.ArtistAnimation(fig, ims, interval=200)
ani.save('/home/test.gif', writer='imagemagick')
plt.show()
There are two curves: animated-sin-curve and static-cos-curve.
the sin-curve is kept as Line2D objects for each step
the cos-curve stay static for each step.
In this way, we show different Artist object for each step.
But I want to keep the rasterized Line2D figure for each step.
I find classes of AxesImage/FigureImage, but I don't know how to save the rasterized figure and make them work.
I tried to convert figure.canvas to AxesImage with following code :
def fig2AxesImage(fig):
import PIL.Image as Image
fig.canvas.draw()
w, h = fig.canvas.get_width_height()
buf = numpy.fromstring(fig.canvas.tostring_argb(), dtype=numpy.uint8)
buf.shape = (w, h, 4)
# canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode
buf = numpy.roll(buf, 3, axis=2)
image = Image.frombytes("RGBA", (w, h), buf.tostring())
image = numpy.asarray(image)
return plt.imshow(image, animated=True)
but with this way, I have to clear canvas at start of next frame, which make the final animation a blank video. (but the .jpg figures I output for each step get the right content)
Does anyone have done this before that save rasterized canvas-figures of matplotlib.pyplot.figure() as a animation Vedio?
celluloid for python 2.7
''' copy from celluloid'''
# from typing import Dict, List # not supported by python 2.7. So comment it
from collections import defaultdict
from matplotlib.figure import Figure
from matplotlib.artist import Artist
from matplotlib.animation import ArtistAnimation
__version__ = '0.2.0'
class Camera:
def __init__(self, figure):
self.figure_ = figure
self.offsets_ = { k:defaultdict(int) \
for k in ['collections', 'patches', 'lines', 'texts', 'artists', 'images']
}
self.photos_ = []
def snap(self):
frame_artists = []
for i, axis in enumerate(self.figure_.axes):
if axis.legend_ is not None:
axis.add_artist(axis.legend_)
for name in self.offsets_:
new_artists = getattr(axis, name)[self.offsets_[name][i]:]
frame_artists += new_artists
self.offsets_[name][i] += len(new_artists)
self.photos_.append(frame_artists)
def animate(self):
return ArtistAnimation(self.figure_, self.photos_)

Pycharm SciView truncate history

I am trying to create a program that can visualize the change of a portfolio in real time. To do this, I update my data and create a new plot with it. When I run the code below in PyCharm, SciView stops displaying the plots after 30 iterations. Ideally, I would like to have it only show the most recent plot, but it would also be fine if it just truncated the history so that I at least always see the current plot. Is there any way to do this? I tried different ways to close the figures (e. g. using plt.close()), but did not achieve the desired result.
Code to reproduce:
import matplotlib.pyplot as plt
import numpy as np
import random
class RealTimeVisualizer:
def __init__(self, x, y):
self.x = x
self.y = y
def update_data(self, x_value, y_value):
"""
Appends values to the data arrays.
"""
self.x.append(x_value)
self.y.append(y_value)
def create_plot(self):
"""
Takes an x and a y (both 1D arrays and constructs a plot from it)
:return: a pyplot figure object
"""
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
# Draw x and y lists
ax.clear()
ax.plot(self.x, self.y)
# Format plot
plt.xticks(rotation=90)
plt.title('Portfolio')
plt.ylabel('Value')
plt.show()
plt.close('all')
if __name__ == '__main__':
portfolio_cash = 10000
tick = 0
real_time_visualizer = RealTimeVisualizer([tick], [portfolio_cash])
for i in np.arange(50):
tick += 1
portfolio_cash += random.randint(-50, 50)
real_time_visualizer.update_data(tick, portfolio_cash)
real_time_visualizer.create_plot()
Rather than creating a new plot and window every time, you can also update the current Matplotlib figure data in each iteration. You then need to view the plot in an interactive Matplotlib environment.
Live updating Matplotlib plots
You can use code similar to this to update the data inside the plot:
import matplotlib.pyplot as plt
import random
plt.ion() # Set pyplot to interactive mode
fig = plt.figure() # Create a figure
ax = fig.add_subplot(111) # Add a subplot to the figure
# Variables for our updating data
x = []
y = []
for i in range(50):
# Generate random data
x.append(i)
y.append(random.random())
# Update the plot with the new x, y data
ax.plot(x, y, 'ro-')
fig.canvas.draw()
fig.canvas.flush_events()
Allow for interactive Matplotlib mode when using SciView
Deactivate SciView or manually set your backend to another interactive GUI to see the updating plot.
This code snipped automatically chooses the correct backend (same list as in the Matplotlib code):
import matplotlib.pyplot as plt
candidates = ["macosx", "qt5agg", "gtk3agg", "tkagg", "wxagg"]
for candidate in candidates:
try:
plt.switch_backend(candidate)
print('Using backend: ' + candidate)
break
except (ImportError, ModuleNotFoundError):
pass
Applied to your code
Your code with suggested modifications would look like this:
import matplotlib.pyplot as plt
import numpy as np
import random
class RealTimeVisualizer:
def __init__(self, x, y):
self.x = x
self.y = y
def update_data(self, x_value, y_value):
"""
Appends values to the data arrays.
"""
self.x.append(x_value)
self.y.append(y_value)
def update_plot(self, fig, ax):
import _tkinter
try:
ax.plot(self.x, self.y, 'ro-')
fig.canvas.draw()
fig.canvas.flush_events()
# Capture an error in case the plotting window is being closed
except _tkinter.TclError:
pass
if __name__ == '__main__':
portfolio_cash = 10000
tick = 0
real_time_visualizer = RealTimeVisualizer([tick], [portfolio_cash])
# Choose the right backend
candidates = ["macosx", "qt5agg", "gtk3agg", "tkagg", "wxagg"]
for candidate in candidates:
try:
plt.switch_backend(candidate)
print('Using backend: ' + candidate)
break
except (ImportError, ModuleNotFoundError):
pass
# Create plot
plt.ion() # Set pyplot to interactive mode
fig = plt.figure() # Create a figure
ax = fig.add_subplot(111) # Add a subplot to the figure
for i in np.arange(50):
tick += 1
portfolio_cash += random.randint(-50, 50)
real_time_visualizer.update_data(tick, portfolio_cash)
real_time_visualizer.update_plot(fig, ax) # Update the plot the new data
Same issue here.
The workaround I found is to change the matplotlib backend to plot outside the PyCharm.
import matplotlib
matplotlib.use('qt5Agg')
matplotlib.pyplot.ioff()
Then you have to explicit open a new figure and show
for i in range(100):
plt.figure()
...
...
plt.show()

Problem animating matplotlib pcolor plot with polar projection using object

I am trying to create a plotting object that produces an animated matplotlib pcolor plot with a polar projection. Currently the object can either create a set of polar plots or try to create an animation of those plots.
When creating the set of polar plots (but not the animation) the object works as planned.
The animation portion of the object is based on this example, which works on my system. Unfortunately the animation as implemented in my object is not working. There is a figure and an MP4 file produced for the animation but both the figure and the too-short animation both show just some mis-shaped axes.
Does anyone have a suggestion of how to capture this figure series in an animation when embedded in an object?
I am using python 3.7, matplotlib 3.03 on a windows 10 machine
The code for the object and the code to run its instantiation are given below.
class Polar_smudge(object):
# object for creating polar contour plots
def __init__(self, azimuth_grid, range_grid):
import numpy as np
self.azimuth_grid = np.deg2rad(azimuth_grid)
self.range_grid = range_grid
self.fig = None
self.ax = None
self.images = []
#------------------------------------------------------------------
def add_data(self, value_grid):
import numpy as np
self.value_grid = value_grid
self.value_grid[self.value_grid<=0] = np.nan
#------------------------------------------------------------------
def add_figure(self, value_grid):
import matplotlib.pyplot as plt
# make and set-up figure
fig, ax = plt.subplots(subplot_kw=dict(projection='polar'))
ax.set_theta_zero_location("N")
ax.set_theta_direction(-1)
ax.set_rlim([0,10])
# make plot
cax = ax.pcolor(self.azimuth_grid, self.range_grid, value_grid, cmap=plt.cm.viridis_r)
ax.grid()
plt.show()
#------------------------------------------------------------------
def start_figure(self):
import matplotlib.pyplot as plt
# make and set-up figure
if self.fig is None :
self.fig, self.ax = plt.subplots(111, subplot_kw=dict(projection='polar'))
self.ax[0].set_theta_zero_location("N")
self.ax[0].set_theta_direction(-1)
def update_figure(self, value_grid):
import matplotlib.pyplot as plt
# make figure and add to image list
self.images.append((self.ax[0].pcolor(self.azimuth_grid, self.range_grid, value_grid, cmap=plt.cm.viridis_r),))
def end_figure(self):
import matplotlib.animation as animation
# animate the figure list
im_ani = animation.ArtistAnimation(self.fig, self.images, interval=50, repeat_delay=3000,blit=True)
im_ani.save('smudge.mp4')
#============This runs the object ====================================
import numpy as np
azimuth_bins = np.linspace(0, 360, 360)
range_bins = np.linspace(0, 10, 30)
# make plotting azim range grids
range_grid, azimuth_grid = np.meshgrid(range_bins, azimuth_bins)
# this works but isnt what I want
good_smudge = Polar_smudge(azimuth_grid,range_grid)
for ix in range(3):
val_grid = np.random.randn(360,30)
good_smudge.add_figure(val_grid)
# this doesnt work
bad_smudge = Polar_smudge(azimuth_grid,range_grid)
bad_smudge.start_figure()
for ix in range(3):
val_grid = np.random.randn(360,30)
bad_smudge.update_figure(val_grid)
bad_smudge.end_figure()
In response to the comment from Earnest, I did some further refinement and it appears that the problem is not linked to being embedded in an object, and also that increasing the number of frames (to eg. 30) does not solve the problem. The code snippet below provides a more concise demonstration of the problem (but lacks the correctly produced figure output option).
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
azimuth_bins = np.linspace(0, 360, 60)
range_bins = np.linspace(0, 10, 30)
images = []
# make plotting azim range grids
range_grid, azimuth_grid = np.meshgrid(range_bins, azimuth_bins)
fig,ax = plt.subplots(111, subplot_kw=dict(projection='polar'))
ax[0].set_theta_zero_location("N")
ax[0].set_theta_direction(-1)
for ix in range(30):
val_grid = np.random.randn(60,30)
images.append((ax[0].pcolor(azimuth_grid, range_grid, val_grid, cmap=plt.cm.viridis_r),))
# animate the figure list
im_ani = animation.ArtistAnimation(fig, images, interval=50, repeat_delay=3000,blit=False)
im_ani.save('smudge2.mp4')

Python Scatter Plot Multiple Colorbar issue

I am trying to draw scatter plot with dynamic data. I am able to draw the data points through looping; but everytime it creates new colorbar.
Here is my code:
import time
from threading import Thread
import pandas as pd
import matplotlib.pyplot as plt
import random
class RealTime:
def __init__(self):
self.flight_complete = True
self.data = pd.DataFrame(data=None, columns=list('ABC'))
self.fig=None
self.axis = None
def on_launch(self):
plt.ion()
self.fig = plt.figure()
self.axis = self.fig.add_subplot(111)
def create_data(self):
x = round(random.uniform(-1, 1), 2)
y = round(random.uniform(-1.65, 1.65), 2)
z = 0.5
temp_data = pd.DataFrame([[x, y, z]], columns=list('ABC'))
self.data = self.data.append(temp_data, ignore_index=True)
# Plot the data
self.plot()
def start_fly(self):
self.on_launch()
fly = Thread(target=self.fly_running)
fly.start()
def fly_running(self):
for _ in range(10):
print("Flying")
# Create the data
self.create_data()
time.sleep(0.1)
return
def plot(self):
plt.gca().cla()
self.data.plot(kind="scatter", x="A", y="B", alpha=0.4,
s=50, label="Real Time Position",
c="C", cmap=plt.get_cmap("jet"), colorbar=True, ax=self.axis)
plt.colormaps()
plt.title("Flight Path Map")
self.fig.canvas.draw()
self.fig.canvas.flush_events()
if __name__ == '__main__':
obj = RealTime()
obj.on_launch()
obj.fly_running()
I have read this post : How to retrieve colorbar instance from figure in matplotlib. But I couldn't really work with that.
Do you know why it creates a new colorbar? and how to avoid it?
Best Regards
Panda's plot is creating new colobar because you're asking it to create one (colorbar=True), and it looks like there is now way to tell the function that there is already a colorbar and that it should use that instead.
There are many ways to go around this problem.
the first one would be not not use DataFrame.plot() but instead use matplotlib directly to generate the plot. That will give you more control over the axes that are used and will let you recycle the colorbar from frame to frame. Here are some links that might be relevant:
How do you add a colormap to a matplotlib Animation?
Updating the positions and colors of pyplot.scatter
the second option if you want to keep your code close to what it is now it to erase the whole figure at each frame, and let pandas recreate the axes it need every time. i.e.:
def plot(self):
self.fig.clf()
self.axis = self.fig.add_subplot(111)
self.axis = self.data.plot(kind="scatter", x="A", y="B", alpha=0.4,
s=50, label="Real Time Position",
c="C", cmap=plt.get_cmap("jet"), colorbar=True, ax=self.axis)

How to assign a plot to a variable and use the variable as the return value in a Python function

I am creating two Python scripts to produce some plots for a technical report. In the first script I am defining functions that produce plots from raw data on my hard-disk. Each function produces one specific kind of plot that I need. The second script is more like a batch file which is supposed to loop around those functions and store the produced plots on my hard-disk.
What I need is a way to return a plot in Python. So basically I want to do this:
fig = some_function_that_returns_a_plot(args)
fig.savefig('plot_name')
But what I do not know is how to make a plot a variable that I can return. Is this possible? Is so, how?
You can define your plotting functions like
import numpy as np
import matplotlib.pyplot as plt
# an example graph type
def fig_barh(ylabels, xvalues, title=''):
# create a new figure
fig = plt.figure()
# plot to it
yvalues = 0.1 + np.arange(len(ylabels))
plt.barh(yvalues, xvalues, figure=fig)
yvalues += 0.4
plt.yticks(yvalues, ylabels, figure=fig)
if title:
plt.title(title, figure=fig)
# return it
return fig
then use them like
from matplotlib.backends.backend_pdf import PdfPages
def write_pdf(fname, figures):
doc = PdfPages(fname)
for fig in figures:
fig.savefig(doc, format='pdf')
doc.close()
def main():
a = fig_barh(['a','b','c'], [1, 2, 3], 'Test #1')
b = fig_barh(['x','y','z'], [5, 3, 1], 'Test #2')
write_pdf('test.pdf', [a, b])
if __name__=="__main__":
main()
If you don't want the picture to be displayed and only get a variable in return, then you can try the following (with some additional stuff to remove axis):
def myplot(t,x):
fig = Figure(figsize=(2,1), dpi=80)
canvas = FigureCanvasAgg(fig)
ax = fig.add_subplot()
ax.fill_between(t,x)
ax.autoscale(tight=True)
ax.axis('off')
canvas.draw()
buf = canvas.buffer_rgba()
X = np.asarray(buf)
return X
The returned variable X can be used with OpenCV for example and do a
cv2.imshow('',X)
These import must be included:
from matplotlib.figure import Figure
from matplotlib.backends.backend_agg import FigureCanvasAgg
The currently accepted answer didn't work for me as such, as I was using scipy.stats.probplot() to plot. I used matplotlib.pyplot.gca() to access an Axes instance directly instead:
"""
For my plotting ideas, see:
https://pythonfordatascience.org/independent-t-test-python/
For the dataset, see:
https://github.com/Opensourcefordatascience/Data-sets
"""
# Import modules.
from scipy import stats
import matplotlib.pyplot as plt
import pandas as pd
from tempfile import gettempdir
from os import path
from slugify import slugify
# Define plot func.
def get_plots(df):
# plt.figure(): Create a new P-P plot. If we're inside a loop, and want
# a new plot for every iteration, this is important!
plt.figure()
stats.probplot(diff, plot=plt)
plt.title('Sepal Width P-P Plot')
pp_p = plt.gca() # Assign an Axes instance of the plot.
# Plot histogram. This uses pandas.DataFrame.plot(), which returns
# an instance of the Axes directly.
hist_p = df.plot(kind = 'hist', title = 'Sepal Width Histogram Plot',
figure=plt.figure()) # Create a new plot again.
return pp_p, hist_p
# Import raw data.
df = pd.read_csv('https://raw.githubusercontent.com/'
'Opensourcefordatascience/Data-sets/master//Iris_Data.csv')
# Subset the dataset.
setosa = df[(df['species'] == 'Iris-setosa')]
setosa.reset_index(inplace= True)
versicolor = df[(df['species'] == 'Iris-versicolor')]
versicolor.reset_index(inplace= True)
# Calculate a variable for analysis.
diff = setosa['sepal_width'] - versicolor['sepal_width']
# Create plots, save each of them to a temp file, and show them afterwards.
# As they're just Axes instances, we need to call get_figure() at first.
for plot in get_plots(diff):
outfn = path.join(gettempdir(), slugify(plot.title.get_text()) + '.png')
print('Saving a plot to "' + outfn + '".')
plot.get_figure().savefig(outfn)
plot.get_figure().show()

Categories

Resources