How can I increase performance Python script using numpy and numba? - python

How can I increase performance Python script using numpy and numba?
I’m trying to convert decimal number to 21-number system.
Input: [15, 18, 28, 11, 7, 5, 41, 139, 6, 507]
Output: [[15], [18], [1, 7], [11], [7], [5], [1, 20], [6, 13], [6], [1, 3, 3]]
My script is working well using CPU.
How can I modify my script? I want to increase performance using GPU.
import numpy as np
from timeit import default_timer as timer
from numba import vectorize
import numba as nb
elements = [
"n|0",
"n|1",
"n|2",
"n|3",
"n|4",
"n|5",
"n|6",
"n|7",
"n|8",
"n|9",
"n|10",
"o|+",
"o|*",
"o|/",
"om|-",
"bl|(",
"br|)",
"e|**2",
"e|**3",
"e|**0.5",
"e|**(1/3)",
]
elements_len = len(elements)
def decimal_to_custom(number):
x = (number % elements_len)
ch = [x]
if (number - x != 0):
return decimal_to_custom(number // elements_len) + ch
else:
return ch
decimal_numbers = np.array([15, 18, 28, 11, 7, 5, 41, 139, 6, 507]) #very big array
custom_numers = []
for decimal_number in decimal_numbers:
custom_numer = decimal_to_custom(decimal_number)
custom_numers.append(custom_numer)
print(custom_numers)

Your code can be summarized as:
import numpy as np
def decimal_to_custom(number, k):
x = (number % k)
ch = [x]
if (number - x != 0):
return decimal_to_custom(number // k, k) + ch
else:
return ch
def remainders_OP(arr, k):
result = []
for value in arr:
result.append(decimal_to_custom(value, k))
return result
decimal_numbers = np.array([15, 18, 28, 11, 7, 5, 41, 139, 6, 507]) #very big array
print(remainders_OP(decimal_numbers, elements_len))
# [[15], [18], [1, 7], [11], [7], [5], [1, 20], [6, 13], [6], [1, 3, 3]]
This code can be speed-up already by replacing the costly recursive implementation of decimal_to_custom() with an iterative and simpler version mod_list() which appends and revert rather than the very expensive head insert (equivalent to list.insert(0, x)) that is implemented in OP:
def mod_list(x, k):
result = []
while x >= k:
result.append(x % k)
x //= k
result.append(x)
return result[::-1]
def remainders(arr, k):
result = []
for x in arr:
result.append(mod_list(x, k))
return result
print(remainders(decimal_numbers, elements_len))
# [[15], [18], [1, 7], [11], [7], [5], [1, 20], [6, 13], [6], [1, 3, 3]]
Now, both can be accelerated with Numba, to obtain some speed-up:
import numba as nb
#nb.njit
def mod_list_nb(x, k):
result = []
while x >= k:
result.append(x % k)
x //= k
result.append(x)
return result[::-1]
#nb.njit
def remainders_nb(arr, k):
result = []
for x in arr:
result.append(mod_list_nb(x, k))
return result
print(remainders_nb(decimal_numbers, elements_len))
# [[15], [18], [1, 7], [11], [7], [5], [1, 20], [6, 13], [6], [1, 3, 3]]
A number of options can be passed on to the decorator, including target_backend="cuda" to have the computation to run on the GPU.
As we shall see with the benchmarks, it is not going to be beneficial.
The reason is that list.append() (as well as list.insert()) is not easy to run in parallel, and hence you cannot easily exploit the massive parallelism of GPUs!
Anyway, the above solutions are slowed down by the choice of the underlying data container.
If one uses fixed size arrays instead of dynamically growing a list at each iteration, this is going to result in a much faster execution:
def remainders_fixed_np(arr, k, m):
arr = arr.copy()
n = len(arr)
result = np.empty((n, m), dtype=np.int_)
for i in range(m - 1, -1, -1):
result[:, i] = arr[:, i + 1] % k
arr //= k
return result
print(remainders_fixed_np(decimal_numbers, elements_len, 3).T)
# [[ 0 0 0 0 0 0 0 0 0 1]
# [ 0 0 1 0 0 0 1 6 0 3]
# [15 18 7 11 7 5 20 13 6 3]]
or, with Numba acceleration (and avoiding unnecessary computation):
#nb.njit
def remainders_fixed_nb(arr, k, m):
n = len(arr)
result = np.zeros((n, m), dtype=np.int_)
for i in range(n):
j = m - 1
x = arr[i]
while x >= k:
q, r = divmod(x, k)
result[i, j] = r
x = q
j -= 1
result[i, j] = x
return result
print(remainders_fixed_nb(decimal_numbers, elements_len, 3).T)
# [[ 0 0 0 0 0 0 0 0 0 1]
# [ 0 0 1 0 0 0 1 6 0 3]
# [15 18 7 11 7 5 20 13 6 3]]
Some Benchmarks
Now some benchmarks run on Google Colab show some indicative timings, where:
the _nb ending indicates Numba acceleration
the _pnb ending indicates Numba acceleration with parallel=True and the outermost range() replaced with nb.prange()
the _cunb ending indicates Numba acceleration with target CUDA target_backend="cuda"
the _cupnb is Numba acceleration with both parallelization and target CUDA
m = 4
n = 100000
arr = np.random.randint(1, k ** m - 1, n)
funcs = remainders_OP, remainders, remainders_nb, remainders_cunb
base = funcs[0](arr, k)
for func in funcs:
res = func(arr, k)
is_good = base == res
print(f"{func.__name__:>16s} {is_good!s:>5s} ", end="")
%timeit -n 4 -r 4 func(arr, k)
# remainders_OP True 333 ms ± 4.38 ms per loop (mean ± std. dev. of 4 runs, 4 loops each)
# remainders True 268 ms ± 5.11 ms per loop (mean ± std. dev. of 4 runs, 4 loops each)
# remainders_nb True 46.9 ms ± 3.16 ms per loop (mean ± std. dev. of 4 runs, 4 loops each)
# remainders_cunb True 46.4 ms ± 1.71 ms per loop (mean ± std. dev. of 4 runs, 4 loops each)
fixed_funcs = remainders_fixed_np, remainders_fixed_nb, remainders_fixed_pnb, remainders_fixed_cunb, remainders_fixed_cupnb
base = fixed_funcs[0](arr, k, m)
for func in fixed_funcs:
res = func(arr, k, m)
is_good = np.all(base == res)
print(f"{func.__name__:>24s} {is_good!s:>5s} ", end="")
%timeit -n 8 -r 8 func(arr, k, m)
# remainders_fixed_np True 10 ms ± 2.09 ms per loop (mean ± std. dev. of 8 runs, 8 loops each)
# remainders_fixed_nb True 3.6 ms ± 315 µs per loop (mean ± std. dev. of 8 runs, 8 loops each)
# remainders_fixed_pnb True 2.68 ms ± 550 µs per loop (mean ± std. dev. of 8 runs, 8 loops each)
# remainders_fixed_cunb True 3.49 ms ± 192 µs per loop (mean ± std. dev. of 8 runs, 8 loops each)
# remainders_fixed_cupnb True 2.63 ms ± 314 µs per loop (mean ± std. dev. of 8 runs, 8 loops each)
This indicate that running on the GPU has minimal effect.
The greatest speed-up is obtained by changing the data container to a pre-allocated one.
The Numba acceleration provides some acceleration both with the dynamic allocation and with the pre-allocated versions.

Related

Roll first column by 1, second column by 2, etc

I have an array in numpy. I want to roll the first column by 1, second column by 2, etc.
Here is an example.
>>> x = np.reshape(np.arange(15), (5, 3))
>>> x
array([[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11],
[12, 13, 14]])
What I want to do:
>>> y = roll(x)
>>> y
array([[12, 10, 8],
[ 0, 13, 11],
[ 3, 1, 14],
[ 6, 4, 2],
[ 9, 7, 5]])
What is the best way to do it?
The real array will be very big. I'm using cupy, the GPU version of numpy. I will prefer solution fastest on GPU, but of course, any idea is welcomed.
You could use advanced indexing:
import numpy as np
x = np.reshape(np.arange(15), (5, 3))
h, w = x.shape
rows, cols = np.arange(h), np.arange(w)
offsets = cols + 1
shifted = np.subtract.outer(rows, offsets) % h
y = x[shifted, cols]
y:
array([[12, 10, 8],
[ 0, 13, 11],
[ 3, 1, 14],
[ 6, 4, 2],
[ 9, 7, 5]])
I implemented a naive solution (roll_for) and compares it to #Chrysophylaxs 's solution (roll_indexing).
Conclusion: roll_indexing is faster for small arrays, but the difference shrinks when the array goes bigger, and is eventually slower than roll_for for very large arrays.
Implementations:
import numpy as np
def roll_for(x, shifts=None, axis=-1):
if shifts is None:
shifts = np.arange(1, x.shape[axis] + 1) # OP requirement
xt = x.swapaxes(axis, 0) # https://stackoverflow.com/a/31094758/13636407
yt = np.empty_like(xt)
for idx, shift in enumerate(shifts):
yt[idx] = np.roll(xt[idx], shift=shift)
return yt.swapaxes(0, axis)
def roll_indexing(x):
h, w = x.shape
rows, cols = np.arange(h), np.arange(w)
offsets = cols + 1
shifted = np.subtract.outer(rows, offsets) % h # fix
return x[shifted, cols]
Tests:
M, N = 5, 3
x = np.arange(M * N).reshape(M, N)
expected = np.array([[12, 10, 8], [0, 13, 11], [3, 1, 14], [6, 4, 2], [9, 7, 5]])
assert np.array_equal(expected, roll_for(x))
assert np.array_equal(expected, roll_indexing(x))
M, N = 100, 200
# roll_indexing did'nt work when M < N before fix
x = np.arange(M * N).reshape(M, N)
assert np.array_equal(roll_for(x), roll_indexing(x))
Benchmark:
M, N = 100, 100
x = np.arange(M * N).reshape(M, N)
assert np.array_equal(roll_for(x), roll_indexing(x))
%timeit roll_for(x) # 859 µs ± 2.8 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
%timeit roll_indexing(x) # 81 µs ± 255 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)
M, N = 1_000, 1_000
x = np.arange(M * N).reshape(M, N)
assert np.array_equal(roll_for(x), roll_indexing(x))
%timeit roll_for(x) # 12.7 ms ± 56.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit roll_indexing(x) # 12.4 ms ± 13.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
M, N = 10_000, 10_000
x = np.arange(M * N).reshape(M, N)
assert np.array_equal(roll_for(x), roll_indexing(x))
%timeit roll_for(x) # 1.3 s ± 6.46 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit roll_indexing(x) # 1.61 s ± 4.96 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Pandas groupby to expanding to list (numpy array)

I have a DataFrame that can be produced using this Python code:
import pandas as pd
df = pd.DataFrame({'visit': [1] * 6 + [2] * 6,
'time': [t for t in range(6)] * 2,
'observations': [o for o in range(12)]})
The following code enables me to reformat the data as desired:
dflist = []
for v_ in df.visit.unique():
for t_ in df.time[df.visit == v_]:
dflist.append([df[(df.visit == v_) & (df.time <= t_)].groupby('visit')['observations'].apply(list)])
pd.DataFrame(pd.concat([df[0] for df in dflist], axis=0))
However this is extremely slow.
I have tried using .expanding(), however, this will only return scalars whereas I would like list (or numpy array).
I would appreciate any help in vectorizing or otherwise optimizing this procedure.
Thanks
Fortunately, in pandas 1.1.0 and newer, expanding produces an iterable which can be used to use take advantage of the faster grouping, but produce non-scaler data like lists:
new_df = pd.DataFrame({
'observations':
[list(x) for x in df.groupby('visit')['observations'].expanding()]
}, index=df['visit'])
new_df:
observations
visit
1 [0]
1 [0, 1]
1 [0, 1, 2]
1 [0, 1, 2, 3]
1 [0, 1, 2, 3, 4]
1 [0, 1, 2, 3, 4, 5]
2 [6]
2 [6, 7]
2 [6, 7, 8]
2 [6, 7, 8, 9]
2 [6, 7, 8, 9, 10]
2 [6, 7, 8, 9, 10, 11]
Timing via %timeit:
Setup:
import pandas as pd
df = pd.DataFrame({'visit': [1] * 6 + [2] * 6,
'time': [t for t in range(6)] * 2,
'observations': [o for o in range(12)]})
Original:
def fn():
dflist = []
for v_ in df.visit.unique():
for t_ in df.time[df.visit == v_]:
dflist.append([
df[(df.visit == v_) & (df.time <= t_)]
.groupby('visit')['observations'].apply(list)
])
return pd.DataFrame(pd.concat([df[0] for df in dflist], axis=0))
%timeit fn()
13 ms ± 692 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
List comprehension with expanding (~13x faster on this sample):
def fn2():
return pd.DataFrame({
'observations':
[list(x) for x in df.groupby('visit')['observations'].expanding()]
}, index=df['visit'])
%timeit fn2()
967 µs ± 57.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Sanity Check:
fn().eq(fn2()).all(axis=None) # True
The double apply approach by #Quixotic22 (~3.4x faster than the original ~3.9x slower than comprehension + expanding):
def fn3():
return (df.
set_index('visit')['observations'].
apply(lambda x: [x]).
reset_index().groupby('visit')['observations'].
apply(lambda x: x.cumsum()))
%timeit fn3()
3.78 ms ± 1.07 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)
*Note this approach only produces a series of observations, does not include the visit as the index.
fn().eq(fn3()).all(axis=None) # False
Looks like a good solution has been provided but dropping this here as a viable alternative.
(df.
set_index('visit')['observations'].
apply(lambda x: [x]).
reset_index().groupby('visit')['observations'].
apply(lambda x: x.cumsum())
)

Max value per diagonal in 2d array

I have array and need max of rolling difference with dynamic window.
a = np.array([8, 18, 5,15,12])
print (a)
[ 8 18 5 15 12]
So first I create difference by itself:
b = a - a[:, None]
print (b)
[[ 0 10 -3 7 4]
[-10 0 -13 -3 -6]
[ 3 13 0 10 7]
[ -7 3 -10 0 -3]
[ -4 6 -7 3 0]]
Then replace upper triangle matrix to 0:
c = np.tril(b)
print (c)
[[ 0 0 0 0 0]
[-10 0 0 0 0]
[ 3 13 0 0 0]
[ -7 3 -10 0 0]
[ -4 6 -7 3 0]]
Last need max values per diagonal, so it means:
max([0,0,0,0,0]) = 0
max([-10,13,-10,3]) = 13
max([3,3,-7]) = 3
max([-7,6]) = 6
max([-4]) = -4
So expected output is:
[0, 13, 3, 6, -4]
What is some nice vectorized solution? Or is possible some another way for expected output?
Use ndarray.diagonal
v = [max(c.diagonal(-i)) for i in range(b.shape[0])]
print(v) # [0, 13, 3, 6, -4]
Not sure exactly how efficient this is considering the advanced indexing involved, but this is one way to do that:
import numpy as np
a = np.array([8, 18, 5, 15, 12])
b = a[:, None] - a
# Fill lower triangle with largest negative
b[np.tril_indices(len(a))] = np.iinfo(b.dtype).min # np.finfo for float
# Put diagonals as rows
s = b.strides[1]
diags = np.ndarray((len(a) - 1, len(a) - 1), b.dtype, b, offset=s, strides=(s, (len(a) + 1) * s))
# Get maximum from each row and add initial zero
c = np.r_[0, diags.max(1)]
print(c)
# [ 0 13 3 6 -4]
EDIT:
Another alternative, which may not be what you were looking for though, is just using Numba, for example like this:
import numpy as np
import numba as nb
def max_window_diffs_jdehesa(a):
a = np.asarray(a)
dtinf = np.iinfo(b.dtype) if np.issubdtype(b.dtype, np.integer) else np.finfo(b.dtype)
out = np.full_like(a, dtinf.min)
_pwise_diffs(a, out)
return out
#nb.njit(parallel=True)
def _pwise_diffs(a, out):
out[0] = 0
for w in nb.prange(1, len(a)):
for i in range(len(a) - w):
out[w] = max(a[i] - a[i + w], out[w])
a = np.array([8, 18, 5, 15, 12])
print(max_window_diffs(a))
# [ 0 13 3 6 -4]
Comparing these methods to the original:
import numpy as np
import numba as nb
def max_window_diffs_orig(a):
a = np.asarray(a)
b = a - a[:, None]
out = np.zeros(len(a), b.dtype)
out[-1] = b[-1, 0]
for i in range(1, len(a) - 1):
out[i] = np.diag(b, -i).max()
return out
def max_window_diffs_jdehesa_np(a):
a = np.asarray(a)
b = a[:, None] - a
dtinf = np.iinfo(b.dtype) if np.issubdtype(b.dtype, np.integer) else np.finfo(b.dtype)
b[np.tril_indices(len(a))] = dtinf.min
s = b.strides[1]
diags = np.ndarray((len(a) - 1, len(a) - 1), b.dtype, b, offset=s, strides=(s, (len(a) + 1) * s))
return np.concatenate([[0], diags.max(1)])
def max_window_diffs_jdehesa_nb(a):
a = np.asarray(a)
dtinf = np.iinfo(b.dtype) if np.issubdtype(b.dtype, np.integer) else np.finfo(b.dtype)
out = np.full_like(a, dtinf.min)
_pwise_diffs(a, out)
return out
#nb.njit(parallel=True)
def _pwise_diffs(a, out):
out[0] = 0
for w in nb.prange(1, len(a)):
for i in range(len(a) - w):
out[w] = max(a[i] - a[i + w], out[w])
np.random.seed(0)
a = np.random.randint(0, 100, size=100)
r = max_window_diffs_orig(a)
print((max_window_diffs_jdehesa_np(a) == r).all())
# True
print((max_window_diffs_jdehesa_nb(a) == r).all())
# True
%timeit max_window_diffs_orig(a)
# 348 µs ± 986 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit max_window_diffs_jdehesa_np(a)
# 91.7 µs ± 1.3 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
%timeit max_window_diffs_jdehesa_nb(a)
# 19.7 µs ± 88.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
np.random.seed(0)
a = np.random.randint(0, 100, size=10000)
%timeit max_window_diffs_orig(a)
# 651 ms ± 26 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit max_window_diffs_jdehesa_np(a)
# 1.61 s ± 6.19 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit max_window_diffs_jdehesa_nb(a)
# 22 ms ± 967 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
The first one may be a bit better for smaller arrays, but doesn't work well for bigger ones. Numba on the other hand is pretty good in all cases.
You can use numpy.diagonal:
a = np.array([8, 18, 5,15,12])
b = a - a[:, None]
c = np.tril(b)
for i in range(b.shape[0]):
print(max(c.diagonal(-i)))
Output:
0
13
3
6
-4
Here's a vectorized solution with strides -
from skimage.util import view_as_windows
n = len(a)
z = np.zeros(n-1,dtype=a.dtype)
p = np.concatenate((a,z))
s = view_as_windows(p,n)
mask = np.tri(n,k=-1,dtype=bool)[:,::-1]
v = s[0]-s
out = np.where(mask,v.min()-1,v).max(1)
With one-loop for memory-efficiency -
n = len(a)
out = [max(a[:-i+n]-a[i:]) for i in range(n)]
Use np.max in place of max for better use of array-memory.
You can abuse the fact that reshaping non-square arrays of shape (N+1, N) to (N, N+1) will make diagonals appear as columns
from scipy.linalg import toeplitz
a = toeplitz([1,2,3,4], [1,4,3])
# array([[1, 4, 3],
# [2, 1, 4],
# [3, 2, 1],
# [4, 3, 2]])
a.reshape(3, 4)
# array([[1, 4, 3, 2],
# [1, 4, 3, 2],
# [1, 4, 3, 2]])
Which you can then use like (note that I've swapped the sign and set the lower triangle to zero)
smallv = -10000 # replace this with np.nan if you have floats
a = np.array([8, 18, 5,15,12])
b = a[:, None] - a
b[np.tril_indices(len(b), -1)] = smallv
d = np.vstack((b, np.full(len(b), smallv)))
d.reshape(len(d) - 1, -1).max(0)[:-1]
# array([ 0, 13, 3, 6, -4])

Getting the diagonal elements of only part of a Tensor

I have a tensor element that has shape (?, a, a, b).
I want to convert this to a tensor of shape (?, a, b) where:
output[ i , j , k ] = input[ i , j , j , k ].
This is simple to do in numpy as I can just assign elements by looping over i, j, k. However, all manipulations must stay as Tensors in Tensorflow as its needed to evaluate the cost function and train the model.
I have already looked at tf.diag_part() but from my understanding, this cannot be specified on specific axes and must be done for the entire tensor.
Since, like you say, tf.diag_part does not allow for axis, it does not seem to be useful here. This is one possible solution with tf.gather_nd:
import tensorflow as tf
import numpy as np
# Input data
inp = tf.placeholder(tf.int32, [None, None, None, None])
# Read dimensions
s = tf.shape(inp)
a, b, c = s[0], s[1], s[3]
# Make indices for gathering
ii, jj, kk = tf.meshgrid(tf.range(a), tf.range(b), tf.range(c), indexing='ij')
idx = tf.stack([ii, jj, jj, kk], axis=-1)
# Gather result
out = tf.gather_nd(inp, idx)
# Test
with tf.Session() as sess:
inp_val = np.arange(36).reshape(2, 3, 3, 2)
print(inp_val)
# [[[[ 0 1]
# [ 2 3]
# [ 4 5]]
#
# [[ 6 7]
# [ 8 9]
# [10 11]]
#
# [[12 13]
# [14 15]
# [16 17]]]
#
#
# [[[18 19]
# [20 21]
# [22 23]]
#
# [[24 25]
# [26 27]
# [28 29]]
#
# [[30 31]
# [32 33]
# [34 35]]]]
print(sess.run(out, feed_dict={inp: inp_val}))
# [[[ 0 1]
# [ 8 9]
# [16 17]]
#
# [[18 19]
# [26 27]
# [34 35]]]
Here are a couple of alternative versions. One using tensor algebra.
inp = tf.placeholder(tf.int32, [None, None, None, None])
b = tf.shape(inp)[1]
eye = tf.eye(b, dtype=inp.dtype)
inp_masked = inp * tf.expand_dims(eye, 2)
out = tf.tensordot(inp_masked, tf.ones(b, inp.dtype), [[2], [0]])
And one using boolean masking:
inp = tf.placeholder(tf.int32, [None, None, None, None])
s = tf.shape(inp)
a, b, c = s[0], s[1], s[3]
mask = tf.eye(b, dtype=tf.bool)
inp_mask = tf.boolean_mask(inp, tf.tile(tf.expand_dims(mask, 0), [a, 1, 1]))
out = tf.reshape(inp_mask, [a, b, c])
EDIT: I took some time measurements for the three methods:
import tensorflow as tf
import numpy as np
def f1(inp):
s = tf.shape(inp)
a, b, c = s[0], s[1], s[3]
ii, jj, kk = tf.meshgrid(tf.range(a), tf.range(b), tf.range(c), indexing='ij')
idx = tf.stack([ii, jj, jj, kk], axis=-1)
return tf.gather_nd(inp, idx)
def f2(inp):
b = tf.shape(inp)[1]
eye = tf.eye(b, dtype=inp.dtype)
inp_masked = inp * tf.expand_dims(eye, 2)
return tf.tensordot(inp_masked, tf.ones(b, inp.dtype), [[2], [0]])
def f3(inp):
s = tf.shape(inp)
a, b, c = s[0], s[1], s[3]
mask = tf.eye(b, dtype=tf.bool)
inp_mask = tf.boolean_mask(inp, tf.tile(tf.expand_dims(mask, 0), [a, 1, 1]))
return tf.reshape(inp_mask, [a, b, c])
with tf.Graph().as_default():
inp = tf.constant(np.arange(100 * 300 * 300 * 10).reshape(100, 300, 300, 10))
out1 = f1(inp)
out2 = f2(inp)
out3 = f3(inp)
with tf.Session() as sess:
v1, v2, v3 = sess.run((out1, out2, out3))
print(np.all(v1 == v2) and np.all(v1 == v3))
# True
%timeit sess.run(out1)
# CPU: 1 ms ± 138 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
# GPU: 1.04 ms ± 93.7 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit sess.run(out2)
# CPU: 1.17 ms ± 150 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
# GPU: 734 ms ± 17.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit sess.run(out3)
# CPU: 1.11 ms ± 172 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
# GPU: 1.41 ms ± 1.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Seems all three are similar on CPU, but the second one is for some reason way slower in my GPU. Not sure what would be the results with float values though. Also, you could try replacing tf.tensordot with tf.einsum, for example. About the first and second one, they seem both fine, although if you are backpropagating through these operations the cost of computing the gradient may vary.

Can motelling be vectorized in pandas?

"Motelling" is a way to smooth response to a signal.
For example: Given a time-varying signal St that takes integer values 1-5, and a response function Ft({S0...t}) that assigns [-1, 0, +1] to each signal, a standard motelling response function would return:
-1 if St = 1, or if (St = 2) & (Ft-1 = -1)
+1 if St = 5, or if (St = 4) & (Ft-1 = +1)
0 otherwise
If I have a DataFrame by time of the signal {S}, is there a vectorized way to apply this motelling function?
E.g., if DataFrame df['S'].values = [1, 2, 2, 2, 3, 5, 3, 4, 1]
then is there a vectorized approach that would produce:
df['F'].values = [-1, -1, -1, -1, 0, 1, 0, 0, -1]
Or, absent a vectorized solution, is there something obviously faster than the following DataFrame.itertuples() approach I am using now?
df = pd.DataFrame(np.random.random_integers(1,5,100000), columns=['S'])
# First set response for time t
df['F'] = np.where(df['S'] == 5, 1, np.where(df['S'] == 1, -1, 0))
# Now loop to apply motelling
previousF = 0
for row in df.itertuples():
df.at[row.Index, 'F'] = np.where((row.S >= 4) & (previousF == 1), 1,
np.where((row.S <= 2) & (previousF == -1), -1, row.F))
previousF = row.F
With a complex DataFrame the loop portion takes O(minute per million rows)!
You can try regex.
The patterns we are looking for are
(1) 1 follows by 1 or 2. (We select this rule because any 2 comes after 1 can be considered as 1 and keep influence the next row's result)
(2) 5 follows by 4 or 5. (Similarly any 4 comes after 5 can be considered as 5)
(1) will results in consecutive -1s and (2) will results in consecutive 1s. The rest that does not match will be 0.
Using these rules, the rest of work is to do replacement. We espeically use a method lambda m: "x"*len(m.group(0)) that can turn the matched results into the length of such matches. (see reference)
import re
s = [1, 2, 2, 2, 3, 5, 3, 4, 1]
str_s = "".join(str(i) for i in s)
s1 = re.sub("5[45]*", lambda m: "x"*len(m.group(0)),str_s)
s2 = re.sub("1[12]*", lambda m: "y"*len(m.group(0)),s1)
l = list(s2)
l2 = [v if v in ["x", "y"] else 0 for v in l]
l3 = [1 if v == 'x' else v for v in l2]
l4 = [-1 if v == 'y' else v for v in l3]
[-1, -1, -1, -1, 0, 1, 0, 0, -1]
Bigger dataset
def tai(s):
str_s = "".join(str(i) for i in s)
s1 = re.sub("5[45]*", lambda m: "x"*len(m.group(0)),str_s)
s2 = re.sub("1[12]*", lambda m: "y"*len(m.group(0)),s1)
l = list(s2)
l2 = [v if v in ["x", "y"] else 0 for v in l]
l3 = [1 if v == 'x' else v for v in l2]
l4 = [-1 if v == 'y' else v for v in l3]
return l4
s = np.random.randint(1,6,100000)
%timeit tai(s)
104 ms ± 6.1 ms per loop (mean ± std. dev. of 7 runs, 10 loops each
df = pd.DataFrame(np.random.randint(1,6,100000), columns=['S'])
# First set response for time t
df['F'] = np.where(df['S'] == 5, 1, np.where(df['S'] == 1, -1, 0))
# Now loop to apply motelling
%%timeit # (OP's answer)
previousF = 0
for row in df.itertuples():
df.at[row.Index, 'F'] = np.where((row.S >= 4) & (previousF == 1), 1,
np.where((row.S <= 2) & (previousF == -1), -1, row.F))
previousF = row.F
1.11 s ± 27.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Reference
Replace substrings in python with the length of each substring
You may notice that since the consecutive elements of F[t] depend on one another this doesn't vectorize well. I'm partial to using numba in this cases. Your function is simple, it works on a numpy array (series is just array under the hood) and it's not easy to vectorize -> numba is ideal for this.
Imports and function:
import numpy as np
import pandas as pd
def motel(S):
F = np.zeros_like(S)
for t in range(S.shape[0]):
if (S[t] == 1) or (S[t] == 2 and F[t-1] == -1):
F[t] = -1
elif (S[t] == 5) or (S[t] == 4 and F[t-1] == 1):
F[t] = 1
# no else required sinze it's already set to zero
return F
Here we can just jit-compile the function
import numba
jit_motel = numba.jit(nopython=True)(motel)
And ensure that the normal and jit versions return expected values
S = pd.Series([1, 2, 2, 2, 3, 5, 3, 4, 1])
print("motel(S) = ", motel(S))
print("jit_motel(S)", jit_motel(S.values))
result:
motel(S) = [-1 -1 -1 -1 0 1 0 0 -1]
jit_motel(S) [-1 -1 -1 -1 0 1 0 0 -1]
For timing, let's scale:
N = 10**4
S = pd.Series( np.random.randint(1, 5, N) )
%timeit jit_motel(S.values)
%timeit motel(S.values)
result:
82.7 µs ± 1.03 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
7.75 ms ± 77.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
For your million data points (didn't time normal function because I didn't wanna wait =) )
N = 10**6
S = pd.Series( np.random.randint(1, 5, N) )
%timeit motel(S.values)
result:
768 ms ± 7.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Boom! Less than a second for a million entries. This approach is simple, readable, and fast. Only downside is the Numba dependency, but it's included in anaconda and available in conda easily (maybe pip I'm not sure).
To aggregate the other answers, first I should note that apparently DataFrame.itertuples() does not iterate deterministically, or as expected, so the sample in the OP doesn't always produce the correct result on large samples.
Thanks to the other answers, I realized that a mechanical application of the motelling logic not only produces correct results, but does so surprisingly quickly when we use DataFrame.fill functions:
def dfmotel(df):
# We'll copy results into column F as we build them
df['F'] = np.nan
# This algo is destructive, so we operate on a copy of the signal
df['temp'] = df['S']
# Fill forward the negative signal
df.loc[df['temp'] == 2, 'temp'] = np.nan
df['temp'].ffill(inplace=True)
df.loc[df['temp'] == 1, 'F'] = -1
# Fill forward the positive signal
df.loc[df['temp'] == 4, 'temp'] = np.nan
df['temp'].ffill(inplace=True)
df.loc[df['temp'] == 5, 'F'] = 1
# All other signals are zero
df['F'].fillna(0, inplace=True)
For all timing tests we will operate on the same input:
df = pd.DataFrame(np.random.randint(1,5,1000000), columns=['S'])
For the DataFrame-based function above we get:
%timeit dfmotel(df.copy())
123 ms ± 2.07 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
This is quite acceptable performance.
tai was first to present this very clever solution using RegEx (which is what inspired my function above), but it can't match the speed of staying in number space:
import re
def tai(s):
str_s = "".join(str(i) for i in s)
s1 = re.sub("5[45]*", lambda m: "x"*len(m.group(0)),str_s)
s2 = re.sub("1[12]*", lambda m: "y"*len(m.group(0)),s1)
l = list(s2)
l2 = [v if v in ["x", "y"] else 0 for v in l]
l3 = [1 if v == 'x' else v for v in l2]
l4 = [-1 if v == 'y' else v for v in l3]
return l4
%timeit tai(df['S'].values)
899 ms ± 9.69 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
But nothing beats compiled code. Thanks to evamicur for this solution using the convenient numba in-line compiler:
import numba
def motel(S):
F = np.zeros_like(S)
for t in range(S.shape[0]):
if (S[t] == 1) or (S[t] == 2 and F[t-1] == -1):
F[t] = -1
elif (S[t] == 5) or (S[t] == 4 and F[t-1] == 1):
F[t] = 1
return F
jit_motel = numba.jit(nopython=True)(motel)
%timeit jit_motel(df['S'].values)
9.06 ms ± 502 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Categories

Resources