I have a socketio setup that uses an eventlet server. My program gets logs from multiple machines and writes them to a database. I have an event called "new_log" which is triggered whenever a new log is sent through the websocket. Since database insertions take longer than the intervals between new logs, when I don't use any queueing system, the logs accumulate on the client side and when the client queue is filled to it's max, I no longer receive any new log. That is the reason I decided to use RabbitMQ.
But, I thought that since db insertions still take longer, a RabbitMQ setup with a single consumer doesn't really solve the problem. This time, the queue will be on the server side but it will still get bigger and bigger. So I wanted it to launch a new consumer thread with each log. I found the following multi-threaded example from Pika's repo:
https://github.com/pika/pika/blob/0.13.1/examples/basic_consumer_threaded.py
and modified it a bit to use it like this:
main.py
import socketio
import os
import threading
import json
import pika
import functools
import config as cfg
from util.rabbitmq import consumer_threaded
sio = socketio.Server(async_mode="eventlet", namespaces='*', cors_allowed_origins=['*'])
app = socketio.WSGIApp(sio)
credentials = pika.PlainCredentials('guest', 'guest')
parameters = pika.ConnectionParameters('localhost', credentials=credentials, heartbeat=100)
connection = pika.BlockingConnection(parameters)
channel = connection.channel()
channel.exchange_declare(exchange="test_exchange", exchange_type="direct", passive=False, durable=True, auto_delete=False)
channel.queue_declare(queue="standard", durable=True)
channel.queue_bind(queue="standard", exchange="test_exchange", routing_key="standard_key")
channel.basic_qos(prefetch_count=1)
#sio.on("new_log")
def client_activity(pid, data):
channel.basic_publish(
exchange='test_exchange',
routing_key='standard_key',
body=json.dumps(data),
properties=pika.BasicProperties(
delivery_mode=pika.spec.PERSISTENT_DELIVERY_MODE
))
return "OK"
#sio.event
def connect(sid, environ, auth):
print(f"[NEW CONNECTION]] {sid}", flush=True)
#sio.event
def disconnect(sid):
sio.disconnect(sid)
print(f"[DISCONNECTED] {sid}", flush=True)
def start_consumer():
on_message_callback = functools.partial(consumer_threaded.on_message, args=(connection, channel))
channel.basic_consume('standard', on_message_callback)
channel.start_consuming()
print("Started consuming", flush=True)
if __name__ == "__main__":
consumer_thread = threading.Thread(target=start_consumer)
consumer_thread.start()
import eventlet
eventlet.monkey_patch()
eventlet.wsgi.server(eventlet.listen(("", 1234)), app)
consumer_threaded.py
import functools
import logging
import threading
import json
from util.logger import save_log
LOG_FORMAT = ('%(levelname) -10s %(asctime)s %(name) -30s %(funcName) '
'-35s %(lineno) -5d: %(message)s')
LOGGER = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO, format=LOG_FORMAT)
def ack_message(channel, delivery_tag):
if channel.is_open:
channel.basic_ack(delivery_tag)
def do_work(connection, channel, delivery_tag, body):
thread_id = threading.get_ident()
fmt1 = 'Thread id: {} Total threads: {} Delivery tag: {} Message body: {}'
LOGGER.info(fmt1.format(thread_id, threading.active_count(), delivery_tag, body))
save_log.save_log(json.loads(body.decode()))
cb = functools.partial(ack_message, channel, delivery_tag)
connection.add_callback_threadsafe(cb)
def on_message(channel, method_frame, header_frame, body, args):
(connection, channel) = args
delivery_tag = method_frame.delivery_tag
t = threading.Thread(target=do_work, args=(connection, channel, delivery_tag, body))
t.start()
t.join()
This seems to be working for a bit but after a while, I get the following error:
AssertionError: ('_AsyncTransportBase._produce() tx buffer size
underflow', -44, 1)
How can I achieve what I described without getting this error?
Related
Setup
I have a python application, which should consume messages from a RabbitMQ and act as a SocketIO server to a Vue2 APP. When it receives messages from RabbitMQ it should send out a message over SocketIO to the Vue2 APP. Therefore I wrote 2 classes RabbitMQHandler and SocketIOHandler. I am starting the RabbitMQHandler in a separate thread so that both the RabbitMQ consume and the wsgi server can run in parallel.
Code
import random
import threading
import socketio
import eventlet
import sys
import os
import uuid
import pika
from dotenv import load_dotenv
import logging
class RabbitMQHandler():
def __init__(self, RABBITMQ_USER, RABBITMQ_PW, RABBITMQ_IP):
self.queue_name = 'myqueue'
self.exchange_name = 'myqueue'
credentials = pika.PlainCredentials(RABBITMQ_USER, RABBITMQ_PW)
self.connection = pika.BlockingConnection(pika.ConnectionParameters(RABBITMQ_IP, 5672, '/', credentials))
self.channel = self.connection.channel()
self.channel.queue_declare(queue=self.queue_name)
self.channel.exchange_declare(exchange=self.exchange_name, exchange_type='fanout')
self.channel.queue_bind(exchange=self.exchange_name, queue=self.queue_name)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.connection.close()
def run(self, callback):
logging.info('start consuming messages...')
self.channel.basic_consume(queue=self.queue_name,auto_ack=True, on_message_callback=callback)
self.channel.start_consuming()
class SocketIOHandler():
def __init__(self):
self.id = str(uuid.uuid4())
# create a Socket.IO server
self.sio = socketio.Server(async_mode='eventlet', cors_allowed_origins='*')
# wrap with a WSGI application
self.app = socketio.WSGIApp(self.sio)
self.sio.on('connect_to_backend', self.handle_connect)
self.sio.on('random_number', self.handle_random_number)
def handle_connect(self, sid, msg):
logging.info('new socket io message')
self.emit('connect_success', {
'success': True,
})
def handle_random_number(self, sid, msg):
logging.info('handle_random_number')
self.emit('response_random_number', { 'number': random.randint(0,10)})
def emit(self, event, msg):
logging.info('socket server: {}'.format(self.id))
logging.info('sending event: "{}"'.format(event))
self.sio.emit(event, msg)
logging.info('sent event: "{}"'.format(event))
def run(self):
logging.info('start web socket on port 8765...')
eventlet.wsgi.server(eventlet.listen(('', 8765)), self.app)
def start_rabbitmq_handler(socketio_handler, RABBITMQ_USER, RABBITMQ_PW, RABBITMQ_IP):
def callback(ch, method, properties, body):
logging.info('rabbitmq handler')
socketio_handler.emit('response_random_number', { 'number': random.randint(0,10)})
with RabbitMQHandler(RABBITMQ_USER, RABBITMQ_PW, RABBITMQ_IP) as rabbitmq_handler:
rabbitmq_handler.run(callback=callback)
threads = []
def main():
global threads
load_dotenv()
RABBITMQ_USER = os.getenv('RABBITMQ_USER')
RABBITMQ_PW = os.getenv('RABBITMQ_PW')
RABBITMQ_IP = os.getenv('RABBITMQ_IP')
socketio_handler = SocketIOHandler()
rabbitmq_thread = threading.Thread(target=start_rabbitmq_handler, args=(socketio_handler, RABBITMQ_USER, RABBITMQ_PW, RABBITMQ_IP))
threads.append(rabbitmq_thread)
rabbitmq_thread.start()
socketio_handler.run()
if __name__ == '__main__':
try:
logging.basicConfig(level=logging.INFO)
logging.getLogger("pika").propagate = False
main()
except KeyboardInterrupt:
try:
for t in threads:
t.exit()
sys.exit(0)
except SystemExit:
for t in threads:
t.exit()
os._exit(0)
Problem
The Problem is, that when the RabbitMQHandler receives a message the event response_random_number does not get through to the Vue2 APP. Even though it is emited in the callback function. When I send the random_number event from the Vue2 APP to the python application I do get the response_random_number event back from the python application in the Vue2 APP.
So all connections work on their own, but not together. My guess would be, that there is some sort of threading communication error. I added the id to the SocketIOHandler class to make sure it is the same instanced object and the prints are the same.
The logs 'socket server: ...', sending event: ... and sent event: ... tell me, that the function is being called correctly.
I have a simple Python backend using falcon and websockets. If a client makes a call to an endpoint (e.g., to submit data) all other connected clients are notified via their respective websocket connection, i.e., the backend makes a broadcast to all currently connected clients. In general, this works just fine. Here's the minimal script for the falcon app
import falcon
from db.dbmanager import DBManager
from ws.wsserver import WebSocketServer
from api.resources.liveqa import DemoResource
dbm = DBManager() # PostgreSQL connection pool; works fine with multiple workers
wss = WebSocketServer() # Works only with 1 worker
app = falcon.App()
demo_resource = DemoResource(dbm, wss)
app.add_route('/api/v1/demo', demo_resource)
And here is the code for the websockets server which I instantiate and pass the resource class:
import json
import asyncio
import websockets
import threading
class WebSocketServer:
def __init__(self):
self.clients = {}
self.start_server()
async def handler(self, ws, path):
session_id = path.split('/')[-1]
if session_id in self.clients:
self.clients[session_id].add(ws)
else:
self.clients[session_id] = {ws}
try:
async for msg in ws:
pass # The clients are not supposed to send anything
except websockets.ConnectionClosedError:
pass
finally:
self.clients[session_id].remove(ws)
async def send(self, client, msg):
await client.send(msg)
def broadcast(self, session_id, msg):
if session_id not in self.clients:
return
for client in self.clients[session_id]:
try:
asyncio.run(self.send(client, json.dumps(msg)))
except:
pass
def start_server(self):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
start_server = websockets.serve(self.handler, host='111.111.111.111', port=5555)
asyncio.get_event_loop().run_until_complete(start_server)
threading.Thread(target=asyncio.get_event_loop().run_forever).start()
I use Gunicorn as server for the backend, and it works if I use just 1 worker. However, if I try --workers 2 I get the error that port 5555 is already in use. I guess this makes sense as each worker is trying to create a WebSocketServer instance using the same ip/port-pair.
What is the best / cleanest / most phytonic way to address this? I assume that I have to ensure that only one WebSocketServer instance is created. But how?
On a side note, I assume that a DBManager instance get created for each worker as well. While it doesn't throw an error as there can be multiple connections pools, I guess ensuring a single instance of DBManager is also the preferred way.
First of all, even running with one worker is potentially problematic, because Gunicorn is primarily a pre-forking server, and forking a process with threads is, in general, unsafe and may lead to unpredictable results.
One way to solve this is to use Gunicorn's server hooks to only start a thread (in this case a WebSocket server) in one of the workers, and only do that after forking. For instance,
import logging
import os
import threading
import falcon
import gunicorn.app.base
logging.basicConfig(
format='%(asctime)s [%(levelname)s] %(message)s', level=logging.INFO)
class HelloWorld:
def on_get(self, req, resp):
resp.media = {'message': 'Hello, World!'}
def do_something(fork_nr):
pid = os.getpid()
logging.info(f'in a thread, {pid=}')
if fork_nr == 1:
logging.info('we could start a WebSocket server...')
else:
logging.info('not the first worker, not starting any servers')
class HybridApplication(gunicorn.app.base.BaseApplication):
forks = 0
#classmethod
def pre_fork(cls, server, worker):
logging.info(f'about to fork a new worker #{cls.forks}')
cls.forks += 1
#classmethod
def post_fork(cls, server, worker):
thread = threading.Thread(
target=do_something, args=(cls.forks,), daemon=True)
thread.start()
def __init__(self):
self.options = {
'bind': '127.0.0.1:8000',
'pre_fork': self.pre_fork,
'post_fork': self.post_fork,
'workers': 4,
}
self.application = falcon.App()
self.application.add_route('/hello', HelloWorld())
super().__init__()
def load_config(self):
config = {key: value for key, value in self.options.items()
if key in self.cfg.settings and value is not None}
for key, value in config.items():
self.cfg.set(key.lower(), value)
def load(self):
return self.application
if __name__ == '__main__':
HybridApplication().run()
This simplistic prototype is not infallible, as we should also handle server reloads, the worker getting killed, etc. Speaking of which, you should probably use another worker type than sync for potentially long running requests, or set a long timeout, because otherwise the worker can get killed, taking the WebSocket thread with it. Specifying a number of threads should automatically change your worker type into gthread.
Note that here I implemented a custom Gunicorn application, but you could achieve the same effect by specifying hooks via a configuration file.
Another option is to use the ASGI flavour of Falcon, and implement even the WebSocket part inside your app:
import asyncio
import logging
import falcon.asgi
logging.basicConfig(
format='%(asctime)s [%(levelname)s] %(message)s', level=logging.INFO)
class HelloWorld:
async def on_get(self, req, resp):
resp.media = {'message': 'Hello, World!'}
async def on_websocket(self, req, ws):
await ws.accept()
logging.info(f'WS accepted {req.path=}')
try:
while True:
await ws.send_media({'message': 'hi'})
await asyncio.sleep(10)
finally:
logging.info(f'WS disconnected {req.path=}')
app = falcon.asgi.App()
app.add_route('/hello', HelloWorld())
Note that Gunicorn itself does not "speak" ASGI, so you would either need to use an ASGI app server, or use Gunicorn as a process manager for Uvicorn workers.
For instance, assuming your file is called test.py, you could run Uvicorn directly as:
pip install uvicorn[standard]
uvicorn test:app
However, if you went the ASGI route, you would need to implement your responders as coroutine functions (async def on_get(...) etc), or run your synchronous DB code in a threadpool executor.
I have attempted to follow guidance given here: Handling long running tasks in pika / RabbitMQ and here: https://github.com/pika/pika/issues/753#issuecomment-318124510 on how to run long tasks in a separate thread to avoid interrupting the connection heartbeat. I'm a beginner to threading and still struggling to understand this solution.
For my final use case, I need to make function calls that are several minutes long, represented in the example code below by the long_function(). I've found that if the sleep call in long_function() exceeds the length of the heartbeat timeout, I lose connection (presumably because this function is blocking thread #2 from receiving/acknowledging the heartbeat messages from thread #1) and I get this message in the logs: ERROR: Unexpected connection close detected: StreamLostError: ("Stream connection lost: RxEndOfFile(-1, 'End of input stream (EOF)')",). A sleep call of the same length in the target function of thread #2 does not lead to a StreamLostError.
What's the proper solution for overcoming the StreamLostError here? Do I launch all subsequent function calls in their own threads to avoid blocking thread #2? Do I increase the heartbeat to be longer than long_function()? If this is the solution, what was the point of running my long task in a separate thread? Why not just make the heartbeat timeout in the main thread long enough to accommodate the whole message being processed? Thanks!
import functools
import logging
import pika
import threading
import time
import os
import ssl
from common_utils.rabbitmq_utils import send_message_to_queue, initialize_rabbitmq_channel
import json
import traceback
logging.basicConfig(format='%(asctime)s %(levelname)s: %(message)s',
level=logging.INFO,
datefmt='%Y-%m-%d %H:%M:%S')
def send_message_to_queue(channel, queue_name, body):
channel.basic_publish(exchange='',
routing_key=queue_name,
body=json.dumps(body),
properties=pika.BasicProperties(delivery_mode=2)
)
logging.info("RabbitMQ publish to queue {} confirmed".format(queue_name))
def initialize_rabbitmq_channel(timeout=5*60):
credentials = pika.PlainCredentials(os.environ.get("RABBITMQ_USER"), os.environ.get("RABBITMQ_PASSWORD"))
context = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2)
params = pika.ConnectionParameters(port=5671, host=os.environ.get("RABBITMQ_HOST"), credentials=credentials,
ssl_options=pika.SSLOptions(context), virtual_host="/", heartbeat=timeout)
connection = pika.BlockingConnection(params)
return connection.channel(), connection
def long_function():
logging.info("Long function starting...")
time.sleep(5)
logging.info("Long function finished.")
def ack_message(channel, delivery_tag):
"""
Note that `channel` must be the same pika channel instance via which
the message being ACKed was retrieved (AMQP protocol constraint).
"""
if channel.is_open:
channel.basic_ack(delivery_tag)
logging.info("Message {} acknowledged".format(delivery_tag))
else:
logging.error("Channel is closed and message acknowledgement will fail")
pass
def do_work(connection, channel, delivery_tag, body):
thread_id = threading.get_ident()
fmt1 = 'Thread id: {} Delivery tag: {} Message body: {}'
logging.info(fmt1.format(thread_id, delivery_tag, body))
# Simulating work including a call to another function that exceeds heartbeat timeout
time.sleep(5)
long_function()
send_message_to_queue(channel, "test_inactive", json.loads(body))
cb = functools.partial(ack_message, channel, delivery_tag)
connection.add_callback_threadsafe(cb)
def on_message(connection, channel, method, property, body):
t = threading.Thread(target=do_work, args=(connection, channel, method.delivery_tag, body))
t.start()
t.join()
if __name__ == "__main__":
channel, connection = initialize_rabbitmq_channel(timeout=3)
channel.basic_qos(prefetch_count=1)
channel.basic_consume(queue="test_queue",
auto_ack=False,
on_message_callback=lambda channel, method, property, body: on_message(connection, channel, method, property, body)
)
channel.start_consuming()
So I have this problem. I want to use both Flask and RabbitMQ to do a microservice capable of doing some computation-heavy task. I basically wants something like the
Remote procedure call (RPC) tutorial from the documentation, but with a REST Api overhead.
So I've come with that code, so far:
server.py
from flask import Flask
import sys
import os
import json
import pika
import uuid
import time
''' HEADERS = {'Content-type': 'audio/*', 'Accept': 'text/plain'}'''
class RPIclient(object):
def __init__(self):
self.connection = pika.BlockingConnection(
pika.ConnectionParameters(host='rabbitmq'))
self.channel = self.connection.channel()
self.channel.basic_qos(prefetch_count=1)
self.channel.exchange_declare(exchange='kaldi_expe', exchange_type='topic')
# Create all the queue and bind them to the corresponding routing key
self.channel.queue_declare('request', durable=True)
result = self.channel.queue_declare('answer', durable=True)
self.channel.queue_bind(exchange='kaldi_expe', queue='request', routing_key='kaldi_expe.web.request')
self.channel.queue_bind(exchange='kaldi_expe', queue='answer', routing_key='kaldi_expe.kaldi.answer')
self.callback_queue = result.method.queue
self.channel.basic_consume(queue="answer", on_message_callback=self.on_response)
def on_response(self, ch, method, props, body):
print("from server, correlation id : " + str(props.correlation_id), file=sys.stderr)
self.response = body
ch.basic_ack(delivery_tag=method.delivery_tag)
def call(self, n):
print("Launched Call ")
self.response = None
self.corr_id = str(uuid.uuid4())
self.channel.basic_publish(
exchange='kaldi_expe',
routing_key='kaldi_expe.web.request',
properties=pika.BasicProperties(
correlation_id=self.corr_id,
),
body=str(n))
while self.response is None:
self.connection.process_data_events()
return int(2)
def flask_app():
app = Flask("__name__")
#app.route('/', methods=['GET'])
def server_is_up():
return 'server is up', 200
#app.route('/add-job/<cmd>')
def add(cmd):
app.config['RPIclient'].call(10)
return "Call RPI client",404
return app
if __name__ == '__main__':
print("Waiting for RabbitMq")
time.sleep(20)
rpiClient = RPIclient()
app = flask_app()
app.config['RPIclient'] = rpiClient
print("Rabbit MQ is connected, starting server", file=sys.stderr)
app.run(debug=True, threaded=False, host='0.0.0.0')
worker.py
import pika
import time
import sys
print(' [*] Waiting for RabbitMQ ...')
time.sleep(20)
print(' [*] Connecting to server ...')
channel = connection.channel()
print(' [*] Waiting for messages.')
def callback(ch, method, properties, body):
print(" [x] Received %s" % body)
print(" [x] Executing task ")
print("from worker, correlation id : " + str(properties.correlation_id))
ch.basic_publish(
exchange='kaldi_expe',
routing_key='kaldi_expe.kaldi.answer',
properties=pika.BasicProperties(correlation_id = properties.correlation_id),
body="response")
print(" [x] Done")
ch.basic_ack(delivery_tag=method.delivery_tag)
channel.basic_qos(prefetch_count=1)
channel.basic_consume(queue='request', on_message_callback=callback)
channel.start_consuming()
Sadly, when I'm sending back a message (from the worker to the server), it seems that the server does consume the message, but never execute the callback (it shows the message as consummed, but not ACK on the rabbit mq interface. Also, print don't show).
I'm pretty lost, since the message seems to be consummed, but the callback seems to not be executed. Do you have any idea where it might come from ?
you did attach the callback method on_response to the queue answer, but you never tell your server to start consuming the queues.
Looks like you are missing self.channel.start_consuming() at the end of your class initialization.
I have two, separate RabbitMQ instances. I'm trying to find the best way to listen to events from both.
For example, I can consume events on one with the following:
credentials = pika.PlainCredentials(user, pass)
connection = pika.BlockingConnection(pika.ConnectionParameters(host="host1", credentials=credentials))
channel = connection.channel()
result = channel.queue_declare(Exclusive=True)
self.channel.queue_bind(exchange="my-exchange", result.method.queue, routing_key='*.*.*.*.*')
channel.basic_consume(callback_func, result.method.queue, no_ack=True)
self.channel.start_consuming()
I have a second host, "host2", that I'd like to listen to as well. I thought about creating two separate threads to do this, but from what I've read, pika isn't thread safe. Is there a better way? Or would creating two separate threads, each listening to a different Rabbit instance (host1, and host2) be sufficient?
The answer to "what is the best way" depends heavily on your usage pattern of queues and what you mean by "best". Since I can't comment on questions yet, I'll just try to suggest some possible solutions.
In each example I'm going to assume exchange is already declared.
Threads
You can consume messages from two queues on separate hosts in single process using pika.
You are right - as its own FAQ states, pika is not thread safe, but it can be used in multi-threaded manner by creating connections to RabbitMQ hosts per thread. Making this example run in threads using threading module looks as follows:
import pika
import threading
class ConsumerThread(threading.Thread):
def __init__(self, host, *args, **kwargs):
super(ConsumerThread, self).__init__(*args, **kwargs)
self._host = host
# Not necessarily a method.
def callback_func(self, channel, method, properties, body):
print("{} received '{}'".format(self.name, body))
def run(self):
credentials = pika.PlainCredentials("guest", "guest")
connection = pika.BlockingConnection(
pika.ConnectionParameters(host=self._host,
credentials=credentials))
channel = connection.channel()
result = channel.queue_declare(exclusive=True)
channel.queue_bind(result.method.queue,
exchange="my-exchange",
routing_key="*.*.*.*.*")
channel.basic_consume(self.callback_func,
result.method.queue,
no_ack=True)
channel.start_consuming()
if __name__ == "__main__":
threads = [ConsumerThread("host1"), ConsumerThread("host2")]
for thread in threads:
thread.start()
I've declared callback_func as a method purely to use ConsumerThread.name while printing message body. It might as well be a function outside the ConsumerThread class.
Processes
Alternatively, you can always just run one process with consumer code per queue you want to consume events.
import pika
import sys
def callback_func(channel, method, properties, body):
print(body)
if __name__ == "__main__":
credentials = pika.PlainCredentials("guest", "guest")
connection = pika.BlockingConnection(
pika.ConnectionParameters(host=sys.argv[1],
credentials=credentials))
channel = connection.channel()
result = channel.queue_declare(exclusive=True)
channel.queue_bind(result.method.queue,
exchange="my-exchange",
routing_key="*.*.*.*.*")
channel.basic_consume(callback_func, result.method.queue, no_ack=True)
channel.start_consuming()
and then run by:
$ python single_consume.py host1
$ python single_consume.py host2 # e.g. on another console
If the work you're doing on messages from queues is CPU-heavy and as long as number of cores in your CPU >= number of consumers, it is generally better to use this approach - unless your queues are empty most of the time and consumers won't utilize this CPU time*.
Async
Another alternative is to involve some asynchronous framework (for example Twisted) and running whole thing in single thread.
You can no longer use BlockingConnection in asynchronous code; fortunately, pika has adapter for Twisted:
from pika.adapters.twisted_connection import TwistedProtocolConnection
from pika.connection import ConnectionParameters
from twisted.internet import protocol, reactor, task
from twisted.python import log
class Consumer(object):
def on_connected(self, connection):
d = connection.channel()
d.addCallback(self.got_channel)
d.addCallback(self.queue_declared)
d.addCallback(self.queue_bound)
d.addCallback(self.handle_deliveries)
d.addErrback(log.err)
def got_channel(self, channel):
self.channel = channel
return self.channel.queue_declare(exclusive=True)
def queue_declared(self, queue):
self._queue_name = queue.method.queue
self.channel.queue_bind(queue=self._queue_name,
exchange="my-exchange",
routing_key="*.*.*.*.*")
def queue_bound(self, ignored):
return self.channel.basic_consume(queue=self._queue_name)
def handle_deliveries(self, queue_and_consumer_tag):
queue, consumer_tag = queue_and_consumer_tag
self.looping_call = task.LoopingCall(self.consume_from_queue, queue)
return self.looping_call.start(0)
def consume_from_queue(self, queue):
d = queue.get()
return d.addCallback(lambda result: self.handle_payload(*result))
def handle_payload(self, channel, method, properties, body):
print(body)
if __name__ == "__main__":
consumer1 = Consumer()
consumer2 = Consumer()
parameters = ConnectionParameters()
cc = protocol.ClientCreator(reactor,
TwistedProtocolConnection,
parameters)
d1 = cc.connectTCP("host1", 5672)
d1.addCallback(lambda protocol: protocol.ready)
d1.addCallback(consumer1.on_connected)
d1.addErrback(log.err)
d2 = cc.connectTCP("host2", 5672)
d2.addCallback(lambda protocol: protocol.ready)
d2.addCallback(consumer2.on_connected)
d2.addErrback(log.err)
reactor.run()
This approach would be even better, the more queues you would consume from and the less CPU-bound the work performing by consumers is*.
Python 3
Since you've mentioned pika, I've restricted myself to Python 2.x-based solutions, because pika is not yet ported.
But in case you would want to move to >=3.3, one possible option is to use asyncio with one of AMQP protocol (the protocol you speak in with RabbitMQ) , e.g. asynqp or aioamqp.
* - please note that these are very shallow tips - in most cases choice is not that obvious; what will be the best for you depends on queues "saturation" (messages/time), what work do you do upon receiving these messages, what environment you run your consumers in etc.; there's no way to be sure other than to benchmark all implementations
Below is an example of how I use one rabbitmq instance to listen to 2 queues at the same time:
import pika
import threading
threads=[]
def client_info(channel):
channel.queue_declare(queue='proxy-python')
print (' [*] Waiting for client messages. To exit press CTRL+C')
def callback(ch, method, properties, body):
print (" Received %s" % (body))
channel.basic_consume(callback, queue='proxy-python', no_ack=True)
channel.start_consuming()
def scenario_info(channel):
channel.queue_declare(queue='savi-virnet-python')
print (' [*] Waiting for scenrio messages. To exit press CTRL+C')
def callback(ch, method, properties, body):
print (" Received %s" % (body))
channel.basic_consume(callback, queue='savi-virnet-python', no_ack=True)
channel.start_consuming()
def manager():
connection1= pika.BlockingConnection(pika.ConnectionParameters
(host='localhost'))
channel1 = connection1.channel()
connection2= pika.BlockingConnection(pika.ConnectionParameters
(host='localhost'))
channel2 = connection2.channel()
t1 = threading.Thread(target=client_info, args=(channel1,))
t1.daemon = True
threads.append(t1)
t1.start()
t2 = threading.Thread(target=scenario_info, args=(channel2,))
t2.daemon = True
threads.append(t2)
t2.start()
for t in threads:
t.join()
manager()
import asyncio
import tornado.ioloop
import tornado.web
from aio_pika import connect_robust, Message
tornado.ioloop.IOLoop.configure("tornado.platform.asyncio.AsyncIOLoop")
io_loop = tornado.ioloop.IOLoop.current()
asyncio.set_event_loop(io_loop.asyncio_loop)
QUEUE = asyncio.Queue()
class SubscriberHandler(tornado.web.RequestHandler):
async def get(self):
message = await QUEUE.get()
self.finish(message.body)
class PublisherHandler(tornado.web.RequestHandler):
async def post(self):
connection = self.application.settings["amqp_connection"]
channel = await connection.channel()
try:
await channel.default_exchange.publish(
Message(body=self.request.body), routing_key="test",
)
finally:
await channel.close()
print('ok')
self.finish("OK")
async def make_app():
amqp_connection = await connect_robust()
channel = await amqp_connection.channel()
queue = await channel.declare_queue("test", auto_delete=True)
await queue.consume(QUEUE.put, no_ack=True)
return tornado.web.Application(
[(r"/publish", PublisherHandler), (r"/subscribe", SubscriberHandler)],
amqp_connection=amqp_connection,
)
if __name__ == "__main__":
app = io_loop.asyncio_loop.run_until_complete(make_app())
app.listen(8888)
tornado.ioloop.IOLoop.current().start()
You can use aio-pika in async way
more examples here
https://buildmedia.readthedocs.org/media/pdf/aio-pika/latest/aio-pika.pdf
Happy coding :)
Pika can be used into a multithreaded consumer. The only requirement is to have a Pika connection per thread.
Pika Github repository has an example here.
A snippet from basic_consumer_threaded.py:
def on_message(ch, method_frame, _header_frame, body, args):
(conn, thrds) = args
delivery_tag = method_frame.delivery_tag
t = threading.Thread(target=do_work, args=(conn, ch, delivery_tag, body))
t.start()
thrds.append(t)
threads = []
on_message_callback = functools.partial(on_message, args=(connection, threads))
channel.basic_consume('standard', on_message_callback)