I am trying to run a nested loop in which I want the output to be saved in four different columns. Let C1R1 be the value I want in the first column first row, C2R2 the one I want in the second column second row, etc. What I have come up with this far gives me a list where the output is saved like this:
['C1R1', 'C2R1', 'C3R1', 'C4R1']. This is the code I am using:
dfs1 = []
for i in range(24):
pd = (data_json2['data']['Rows'][i])
for j in range(4):
pd1 = pd['Columns'][j]['Value']
dfs1.append(pd1)
What could be a good way to achieve this?
EDIT: This is what I want to achieve:
Column 1 Column 2 Column 3 Column 4
0 0 24 48 72
1 1 25 49 73
2 2 26 50 74
3 3 27 51 75
4 4 28 52 76
5 5 29 53 77
6 6 30 54 78
7 7 31 55 79
8 8 32 56 80
9 9 33 57 81
10 10 34 58 82
11 11 35 59 83
12 12 36 60 84
13 13 37 61 85
14 14 38 62 86
15 15 39 63 87
16 16 40 64 88
17 17 41 65 89
18 18 42 66 90
19 19 43 67 91
20 20 44 68 92
21 21 45 69 93
22 22 46 70 94
23 23 47 71 95
While this is what I got now:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]
Thank you.
Try:
import pandas as pd
def get_dataframe(num_cols=4, num_values=24):
return pd.DataFrame(
([v * 24 + c for v in range(num_cols)] for c in range(num_values)),
columns=[f"Column {c}" for c in range(1, num_cols + 1)],
)
df = get_dataframe()
print(df)
Prints:
Column 1 Column 2 Column 3 Column 4
0 0 24 48 72
1 1 25 49 73
2 2 26 50 74
3 3 27 51 75
4 4 28 52 76
5 5 29 53 77
6 6 30 54 78
7 7 31 55 79
8 8 32 56 80
9 9 33 57 81
10 10 34 58 82
11 11 35 59 83
12 12 36 60 84
13 13 37 61 85
14 14 38 62 86
15 15 39 63 87
16 16 40 64 88
17 17 41 65 89
18 18 42 66 90
19 19 43 67 91
20 20 44 68 92
21 21 45 69 93
22 22 46 70 94
23 23 47 71 95
Related
How do I convert a list of lists to a panda dataframe?
it is not in the form of coloumns but instead in the form of rows.
#!/usr/bin/env python
from random import randrange
import pandas
data = [[[randrange(0,100) for j in range(0, 12)] for y in range(0, 12)] for x in range(0, 5)]
print data
df = pandas.DataFrame(data[0], columns=['B','P','F','I','FP','BP','2','M','3','1','I','L'])
print df
for example:
data[0][0] == [64, 73, 76, 64, 61, 32, 36, 94, 81, 49, 94, 48]
I want it to be shown as rows and not coloumns.
currently it shows somethign like this
B P F I FP BP 2 M 3 1 I L
0 64 73 76 64 61 32 36 94 81 49 94 48
1 57 58 69 46 34 66 15 24 20 49 25 98
2 99 61 73 69 21 33 78 31 16 11 77 71
3 41 1 55 34 97 64 98 9 42 77 95 41
4 36 50 54 27 74 0 8 59 27 54 6 90
5 74 72 75 30 62 42 90 26 13 49 74 9
6 41 92 11 38 24 48 34 74 50 10 42 9
7 77 9 77 63 23 5 50 66 49 5 66 98
8 90 66 97 16 39 55 38 4 33 52 64 5
9 18 14 62 87 54 38 29 10 66 18 15 86
10 60 89 57 28 18 68 11 29 94 34 37 59
11 78 67 93 18 14 28 64 11 77 79 94 66
I want the rows and coloumns to be switched. Moreover, How do I make it for all 5 main lists?
This is how I want the output to look like with other coloumns also filled in.
B P F I FP BP 2 M 3 1 I L
0 64
1 73
1 76
2 64
3 61
4 32
5 36
6 94
7 81
8 49
9 94
10 48
However. df.transpose() won't help.
This is what I came up with
data = [[[randrange(0,100) for j in range(0, 12)] for y in range(0, 12)] for x in range(0, 5)]
print data
df = pandas.DataFrame(data[0], columns=['B','P','F','I','FP','BP','2','M','3','1','I','L'])
print df
df1 = df.transpose()
df1.columns = ['B','P','F','I','FP','BP','2','M','3','1','I','L']
print df1
import numpy
df = pandas.DataFrame(numpy.asarray(data[x]).T.tolist(),
columns=['B','P','F','I','FP','BP','2','M','3','1','I','L'])
n: 8
0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63
How to print a number table like this in python with n that can be any number?
I am using a very stupid way to print it but the result is not the one expected:
n = int(input('n: '))
if n == 4:
print(' 0 1 2 3\n4 5 6 7\n8 9 10 11\n12 13 14 15')
if n == 5:
print(' 0 1 2 3 4\n5 6 7 8 9\n10 11 12 13 14\n15 16 17 18 19\n20 21 22 23 24')
if n == 6:
print(' 0 1 2 3 4 5\n6 7 8 9 10 11\n12 13 14 15 16 17\n18 19 20 21 22 23\n24 25 26 27 28 29\n30 31 32 33 34 35')
if n == 7:
print(' 0 1 2 3 4 5 6\n7 8 9 10 11 12 13\n14 15 16 17 18 19 20\n21 22 23 24 25 26 27\n28 29 30 31 32 33 34\n35 36 37 38 39 40 41\n42 43 44 45 46 47 48')
if n == 8:
print(' 0 1 2 3 4 5 6 7\n8 9 10 11 12 13 14 15\n16 17 18 19 20 21 22 23\n24 25 26 27 28 29 30 31\n32 33 34 35 36 37 38 39\n40 41 42 43 44 45 46 47\n48 49 50 51 52 53 54 55\n56 57 58 59 60 61 62 63')
if n == 9:
print(' 0 1 2 3 4 5 6 7 8\n9 10 11 12 13 14 15 16 17\n18 19 20 21 22 23 24 25 26\n27 28 29 30 31 32 33 34 35\n36 37 38 39 40 41 42 43 44\n45 46 47 48 49 50 51 52 53\n54 55 56 57 58 59 60 61 62\n63 64 65 66 67 68 69 70 71\n72 73 74 75 76 77 78 79 80')
if n == 10:
print(' 0 1 2 3 4 5 6 7 8 9\n10 11 12 13 14 15 16 17 18 19\n20 21 22 23 24 25 26 27 28 29\n30 31 32 33 34 35 36 37 38 39\n40 41 42 43 44 45 46 47 48 49\n50 51 52 53 54 55 56 57 58 59\n60 61 62 63 64 65 66 67 68 69\n70 71 72 73 74 75 76 77 78 79\n80 81 82 83 84 85 86 87 88 89\n90 91 92 93 94 95 96 97 98 99')
here is the result:
n: 8
0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63
I won't show you the code directly, here is some tips for you. Do you know % operator in python? And how to use it to break lines. As for the format, zfill function will help you. You may need to learn for or while statement to solve your problem
You can do this with a range loop and a list comprehension.
In order for the output to look right you need to figure out what the width of the largest value in the square will be. You then need to format each value to fit in that width (right-justified). Something like this:
def number_square(n):
w = len(str(n*n-1))
for r in range(n):
print(*[f'{c:>{w}}' for c in range(r*n, r*n+n)])
number_square(8)
Output:
0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.randint(0,100,size=(100, 4)), columns=list('ABCD'))
print(df)
I want column 'A' always to have a value greater than column 'B'.
df.A, df.B = df[['A', 'B']].max(axis=1), df[['A', 'B']].min(axis=1)
Try this:
newdf = df.apply(lambda x: x if x[0]>x[1] else [*x[:2][::-1],*x[2:]],axis=1)
print(newdf)
Output:
A B C D
0 85 14 22 85
1 62 54 20 1
2 82 78 48 59
3 81 59 54 39
4 92 12 79 44
5 69 64 8 11
6 49 34 48 69
7 68 28 80 27
8 72 17 2 40
9 26 15 49 62
10 29 2 86 12
11 69 7 32 99
12 39 35 65 32
13 45 36 36 12
14 54 21 29 79
15 91 82 35 80
16 67 16 4 37
17 94 82 93 37
18 64 18 2 15
19 13 11 28 82
20 78 9 93 45
21 72 41 16 33
22 92 71 62 69
23 87 79 71 11
24 31 14 8 24
25 85 27 43 3
26 82 34 14 52
27 41 32 39 48
28 13 12 24 86
29 96 17 14 80
.. .. .. .. ..
70 17 13 20 91
71 26 7 57 96
72 41 0 24 58
73 98 68 90 13
74 88 35 81 56
75 65 43 70 86
76 82 81 44 68
77 97 45 23 66
78 81 45 78 48
79 62 24 43 62
80 43 13 42 49
81 97 28 75 45
82 3 0 54 40
83 57 46 16 38
84 87 46 35 13
85 41 13 78 89
86 62 36 94 23
87 84 35 69 93
88 63 18 39 3
89 45 42 30 6
90 81 8 49 82
91 28 28 11 47
92 97 81 49 92
93 86 24 82 40
94 76 72 30 51
95 93 92 1 69
96 97 76 38 81
97 87 49 26 64
98 98 25 93 55
99 57 2 87 10
[100 rows x 4 columns]
You can apply it to any no of columns.
import numpy as np
import pandas as pd
#np.random.seed(1)
df = pd.DataFrame(np.random.randint(0,100,size=(100, 4)), columns=list('ABCD'))
#we are just sorting values of each rows in descending order.
df.values[:,::-1].sort()
print(df)
It gives following output:
A B C D
0 72 37 12 9
1 79 75 64 5
2 76 71 16 1
3 50 25 20 6
4 84 28 18 11
5 68 50 29 14
6 96 94 87 87
7 86 13 9 7
8 63 61 57 22
9 81 60 1 0
10 88 47 13 8
11 72 71 30 3
12 70 57 49 21
13 68 43 24 3
14 80 76 52 26
15 82 64 41 15
16 98 87 68 25
17 26 25 22 7
18 67 27 23 9
19 83 57 38 37
20 34 32 10 8
I have a DataFrame (df) and I need to split it into n number of Dataframes based on the column numbers. But, it has to follow the Triangular Series pattern:
df1 = df[[0]]
df2 = df[[1,2]]
df3 = df[[3,4,5]]
df4 = df[[6,7,8,9]]
etc.
Consider the dataframe df
df = pd.DataFrame(
np.arange(100).reshape(10, 10),
columns=list('ABCDEFGHIJ')
)
df
A B C D E F G H I J
0 0 1 2 3 4 5 6 7 8 9
1 10 11 12 13 14 15 16 17 18 19
2 20 21 22 23 24 25 26 27 28 29
3 30 31 32 33 34 35 36 37 38 39
4 40 41 42 43 44 45 46 47 48 49
5 50 51 52 53 54 55 56 57 58 59
6 60 61 62 63 64 65 66 67 68 69
7 70 71 72 73 74 75 76 77 78 79
8 80 81 82 83 84 85 86 87 88 89
9 90 91 92 93 94 95 96 97 98 99
i_s, j_s = np.arange(4).cumsum(), np.arange(1, 5).cumsum()
df1, df2, df3, df4 = [
df.iloc[:, i:j] for i, j in zip(i_s, j_s)
]
Verify
pd.concat(dict(enumerate([df.iloc[:, i:j] for i, j in zip(i_s, j_s)])), axis=1)
0 1 2 3
A B C D E F G H I J
0 0 1 2 3 4 5 6 7 8 9
1 10 11 12 13 14 15 16 17 18 19
2 20 21 22 23 24 25 26 27 28 29
3 30 31 32 33 34 35 36 37 38 39
4 40 41 42 43 44 45 46 47 48 49
5 50 51 52 53 54 55 56 57 58 59
6 60 61 62 63 64 65 66 67 68 69
7 70 71 72 73 74 75 76 77 78 79
8 80 81 82 83 84 85 86 87 88 89
9 90 91 92 93 94 95 96 97 98 99
first get Triangular Number Series, then apply it to dataframe
n = len(df.columns.tolist())
end = 0
i = 0
res = []
while end < n:
begin = end
end = i*(i+1)/2
res.append(begin,end)
idx = map( lambda x:range(x),res)
for i in idx:
df[i]
So I am trying to merge the following columns of data which are currently indexed as daily entries (but only have points once per week). I have separated the columns into year variables but am having trouble getting them into a combined dataframe and disregard the date index so that I can build out min/max columns by week over the years. I am not sure how to get merge/join function to do this.
#Create year variables, append to new dataframe with new index
I have the following:
def minmaxdata():
Totrigs = dataforgraphs()
tr = Totrigs
yrs=[tr['2007'],tr['2008'],tr['2009'],tr['2010'],tr['2011'],tr['2012'],tr['2013'],tr['2014']]
yrlist = ['tr07','tr08','tr09','tr10','tr11','tr12','tr13','tr14']
dic = dict(zip(yrlist,yrs))
yr07,yr08,yr09,yr10,yr11,yr12,yr13,yr14 =dic['tr07'],dic['tr08'],dic['tr09'],dic['tr10'],dic['tr11'],dic['tr12'],dic['tr13'],dic['tr14']
minmax = yr07.append([yr08,yr09,yr10,yr11,yr12,yr13,yr14],ignore_index=True)
I would like a Dataframe like the following:
2007 2008 2009 2010 2011 2012 2013 2014 min max
1 10 13 10 12 34 23 22 14 10 34
2 25 ...
3 22
4 ...
5
.
.
. ...
52
I'm not sure what your original data look like, but I don't think it's a good idea to hard-code all years. You lose re-usability. I'll setup a sequence of random integers indexed by date with one date per week.
In [65]: idx = pd.date_range ('2007-1-1','2014-12-31',freq='W')
In [66]: df = pd.DataFrame(np.random.randint(100, size=len(idx)), index=idx, columns=['value'])
In [67]: df.head()
Out[67]:
value
2007-01-07 7
2007-01-14 2
2007-01-21 85
2007-01-28 55
2007-02-04 36
In [68]: df.tail()
Out[68]:
value
2014-11-30 76
2014-12-07 34
2014-12-14 43
2014-12-21 26
2014-12-28 17
Then get year of the week:
In [69]: df['year'] = df.index.year
In [70]: df['week'] = df.groupby('year').cumcount()+1
(You may try df.index.week for week# but I've seen weird behavior like starting from week #53 in Jan.)
Finally, do a pivot table to transform and get row-wise max/min:
In [71]: df2 = df.pivot_table(index='week', columns='year', values='value')
In [72]: df2['max'] = df2.max(axis=1)
In [73]: df2['min'] = df2.min(axis=1)
And now our dataframe df2 looks like this and should be what you need:
In [74]: df2
Out[74]:
year 2007 2008 2009 2010 2011 2012 2013 2014 max min
week
1 7 82 13 32 24 58 18 10 82 7
2 2 5 29 0 2 97 59 83 97 0
3 85 89 8 83 63 73 47 49 89 8
4 55 5 1 44 78 10 13 87 87 1
5 36 41 48 98 98 24 24 69 98 24
6 51 43 62 60 44 57 34 33 62 33
7 37 66 72 46 28 11 73 36 73 11
8 30 13 86 93 46 67 95 15 95 13
9 78 84 16 21 70 39 43 90 90 16
10 9 2 88 15 39 81 44 96 96 2
11 34 76 16 44 44 26 30 77 77 16
12 2 24 23 13 25 69 25 74 74 2
13 66 91 67 77 18 47 95 66 95 18
14 59 52 22 42 40 99 88 21 99 21
15 76 17 31 57 43 31 91 67 91 17
16 76 38 53 43 84 45 78 9 84 9
17 88 53 34 22 99 93 61 42 99 22
18 78 19 82 19 5 80 55 69 82 5
19 54 92 56 6 2 85 7 67 92 2
20 8 56 86 41 60 76 31 81 86 8
21 64 76 11 38 41 98 39 72 98 11
22 21 86 34 1 15 27 26 95 95 1
23 82 90 3 17 62 18 93 20 93 3
24 47 42 32 27 83 8 22 14 83 8
25 15 66 70 16 4 22 26 14 70 4
26 12 68 21 7 86 2 27 10 86 2
27 85 85 9 39 17 94 67 42 94 9
28 73 80 96 49 46 23 69 84 96 23
29 57 74 6 71 79 31 79 7 79 6
30 18 84 85 34 71 69 0 62 85 0
31 24 40 93 53 72 46 44 71 93 24
32 95 4 58 57 68 27 95 71 95 4
33 65 84 87 41 38 45 71 33 87 33
34 62 14 41 83 79 63 44 13 83 13
35 49 96 50 62 25 45 69 63 96 25
36 6 38 86 34 98 60 67 80 98 6
37 99 44 26 19 19 20 57 17 99 17
38 2 40 7 65 68 58 68 13 68 2
39 72 31 83 65 69 39 10 76 83 10
40 90 31 42 20 7 8 62 79 90 7
41 10 46 82 96 30 43 12 84 96 10
42 79 38 28 78 25 9 80 2 80 2
43 64 83 63 40 29 86 10 15 86 10
44 89 91 62 48 53 69 16 0 91 0
45 99 26 85 45 26 53 79 86 99 26
46 35 14 46 25 74 6 68 44 74 6
47 17 9 84 88 29 83 85 1 88 1
48 18 69 55 16 77 35 16 76 77 16
49 60 4 36 50 81 28 50 34 81 4
50 36 29 38 28 81 86 71 43 86 28
51 41 82 95 27 95 77 74 26 95 26
52 2 81 89 82 28 2 11 17 89 2
53 NaN NaN NaN NaN NaN 0 NaN NaN 0 0
EDIT:
If you need max/min over a certain columns, just list them. In this case (2007-2013), they are consecutive so you can do the following.
df2['max_2007to2013'] = df2[range(2007,2014)].max(axis=1)
If not, simply list them like: df2[[2007,2010,2012,2013]].max(axis=1)