Generic is an abstract class in python? - python

I'm trying to create a base class that works for any CRUD in applications and I've seen the following implementation:
ModelType = TypeVar("ModelType", bound=Base)
CreateSchemaType = TypeVar("CreateSchemaType", bound=BaseModel)
UpdateSchemaType = TypeVar("UpdateSchemaType", bound=BaseModel)
class CRUDBase(Generic[ModelType, CreateSchemaType, UpdateSchemaType]):
def __init__(self, model: Type[ModelType]):
"""CRUD object with default methods to Create, Read, Update,
Delete (CRUD).
**Parameters**
* `model`: A SQLAlchemy model class
* `schema`: A Pydantic model (schema) class
"""
self.model = model
'...crud methods'`
Generic is a way to define an abstract class, containing the objects that are specified (in this case [ModelType,CreateSchemaType, UpdateSchemaType]) or what is the use of generic?

If your question is about the purpose of typing.Generic I would suggest you read through PEP 484. It has a section dedicated to user defined generic classes with some examples specifically for this, but the entire document is worthwhile reading IMHO. If you are unsure about the entire concept of generic types, the Wikipedia articles on parametric polymorphism and generic programming might even be worth skimming.
In very simple terms, you can use the Generic base class to define your own classes in a generic way, i.e. parameterized with regards to one or more type arguments. These type parameters are constructed via typing.TypeVar. It is worth noting that in most cases these things are only relevant for the purposes of type safety, which is not really enforced by Python itself. Instead, static type checkers (most IDEs have them built-in) deal with those things.
As to your example, it is entirely possible to define your class in a generic way and thus improve your own coding experience because you'll likely get useful auto-suggestions and warnings by your IDE. This only really becomes useful, if you use the type variables somewhere else throughout your class. Example:
from typing import Generic, TypeVar
class Base:
pass
ModelType = TypeVar("ModelType", bound=Base)
class CRUDBase(Generic[ModelType]):
def __init__(self, model: type[ModelType]):
self.model = model
def get_model_instance(self) -> ModelType:
return self.model()
class Sub(Base):
def foo(self) -> None:
print("hi mom")
if __name__ == "__main__":
crud_a = CRUDBase(Sub)
crud_b = CRUDBase(Base)
a = crud_a.get_model_instance()
b = crud_b.get_model_instance()
a.foo()
b.foo() # error
A good type checker like mypy will know, that a is of the Sub type and thus has the foo method, whereas b is of the Base type and therefore does not. And it will know so just from the way we annotated CRUDBase.
PyCharm for example struggles with this (don't know why). Fortunately, we can help it out with explicit type annotations because we defined CRUDBase as a generic type:
...
crud_a: CRUDBase[Sub] = CRUDBase(Sub)
crud_b: CRUDBase[Base] = CRUDBase(Base)
a = crud_a.get_model_instance()
b = crud_b.get_model_instance()
a.foo()
b.foo() # PyCharm marks `foo` and complains
Notice that so far there is nothing particularly "abstract" about our CRUDBase. It is fully self-contained and functioning like this (albeit not very useful yet).
If you want a class to be an abstract base and not be directly instantiated, the abc module provides you with the tools you need. You can define an abstract base class and abstract methods on it that all subclasses must implement. But I think it is clear now that this is a different concept. The idea is that an abstract class is not intended to be instantiated, only its subclasses are.
I hope this helps point you in a few useful directions.

Related

pythonic way to expose user override hooks

Note: although my particular use is Flask related, I think the question is more general.
I am building a Flask web application meant to be customized by the user. For example, the user is expected to provide a concrete subclass of a DatabaseInterface and may add to the list of certain ModelObjects that the application knows how to handle.
What is the best way to expose the various hooks to users, and indicate required and optional status? 'Best' here primarily means most 'pythonic', or "easiest for python users to grasp", but other criteria like not causing headaches down the road are certainly worth mentioning.
Some approaches I've considered:
Rely solely on documentation
Create a template file with documented overrides, much like default config files for many servers. E.g.
app = mycode.get_app()
##Add your list of extra foo classes here
#app.extra_foos = []
Create a UserOverrides class with an attr/method for each of the hooks; possibly split into RequiredOverrides and OptionalOverrides
Create an empty class with unimplemented methods that the user must subclass into a concrete instance
One method is by using abstract base classes (abc module). For example, you can define an ABC with abstract methods that must be overridden by child classes like this:
from abc import ABC
class MyClass(ABC): # inherit from ABC
def __init__(self):
pass
#abstractmethod
def some_method(self, args):
# must be overridden by child class
pass
You would then implement a child class like:
class MyChild(MyClass):
# uses parent's __init__ by default
def some_method(self, args):
# overrides the abstract method
You can specify what everything needs to do in the overridden methods with documentation. There are also decorators for abstract properties, class methods, and static methods. Attempting to instantiate an ABC that does not have all of its abstract methods/properties overridden will result in an error.
Inheritance. Is. Bad.
This is especially true in Python, which gives you a nice precedent to avoid the issue. Consider the following code:
len({1,2,3}) # set with length 3
len([1,2,3]) # list with length 3
len((1,2,3)) # tuple with length 3
Which is cool and all for the built-in data structures, but what if you want to make your own data structure and have it work with Python's len? Simple:
class Duple(object):
def __init__(self, fst, snd):
super(Duple, self).__init__()
self.fst = fst
self.snd = snd
def __len__():
return 2
A Duple is a two-element (only) data structure (calling it with more or fewer arguments raises) and now works with len:
len(Duple(1,2)) # 2
Which is exactly how you should do this:
def foo(arg):
return arg.__foo__()
Any class that wants to work with your foo function just implements the __foo__ magic method, which is how len works under the hood.

Are Mixin classes abstract base classes

Are Mixin classes abstract base classes? In the example below, the calls to test_base would fail because python wouldn't be able to resolve self.assertEqual for example.
Also, is PyCharm incorrect as flagging Mixin classes like the one below has having unresolved attribute errors?
class TestConverterMixin(object):
def setUp(self):
self.alt_hasher = getattr(hash, self.converter.__class__.__name__)
def test_base(self):
with self.settings(PASSWORD_HASHERS=[self.hasher, ]):
load_hashers(settings.PASSWORD_HASHERS)
for password in PASSWORDS:
orig = self.alt_hasher.encrypt(password)
conv = self.converter.from_orig(orig)
# see if we get a working hash:
self.assertTrue(check_password(password, conv))
# convert back and test with passlib:
back = self.converter.to_orig(conv)
self.assertEqual(orig, back)
Are Mixin classes AbstractBaseClasses? The most accurate answer for your case is no but it probably should be.
Your class as a stand-alone cannot survive for you reasons you pointed out. By making it an ABC you explicitly tell anyone looking at your class (like pycharm) that
from abc import ABCMeta, abstractmethod
class TestConverterMixin(object):
__metaclass__ = ABCMeta
#abstractmethod
def assertEqual(self, other):
"Need concrete implementation somewhere"
.... the rest of your code
The problem is that you would need this for all of the other methods (self.AssertTrue, self.converter etc). You could have something else in mind but this seriously looks like just a subclass of unittest.TestCase to me.
Oh and was PyCharm wrong. No, they got it right. If you made this an ABC or a subclass of TestCase, they would not have complained. If you used Interfaces, like zope.Interface, pycharm and the like usually get that wrong since they don't understand the registration and lookup process.(it is outside the python core)
I kept having troubles to get PyCharm to not complain about unresolved attribute reference errors on mixin classes. In particular, I also had mixin classes depending on other mixin classes for which I couldn't make one inherit from the other. But then I found this almost perfect way to make PyCharm 2017.1 happy:
class Human:
def is_male(self):
return True
class BeardMixin:
_facial_hair = {'length': 7, 'color': 'brown'}
def has_beard(self):
return True
class BeardLengthMixin:
"""Mixin for class Human with BeardMixin to provide get_beard_length()"""
def get_beard_length(self):
assert isinstance(self, (Human, BeardMixin))
# PyCharm will now not complain about any of these 3 attributes
if self.is_male() and self.has_beard():
return self._facial_hair['length']
The assert statement gives PyCharm the necessary information about which types self could be. There's a drawback though: The assert statement itself does not do what you think it does: It only checks that self is of either type, not whether it's of both. Unfortunately, using two assert statements doesn't work, because the second overrides the first one as far as PyCharm's type deduction is concerned.

Python2.7: infinite loop when super __init__ creates an instance of it's own subclass

I have the sense that this must be kind of a dumb question—nub here. So I'm open to an answer of the sort "This is ass-backwards, don't do it, please try this: [proper way]".
I'm using Python 2.7.5.
General Form of the Problem
This causes an infinite loop unless Thesaurus (an app-wide singleton) does not call Baseclass.__init__()
class Baseclass():
def __init__(self):
thes = Thesaurus()
#do stuff
class Thesaurus(Baseclass):
def __init__(self):
Baseclass.__init__(self)
#do stuff
My Specific Case
I have a base class that virtually every other class in my app extends (just some basic conventions for functionality within the app; perhaps should just be an interface). This base class is meant to house a singleton of a Thesaurus class that grants some flexibility with user input by inferring some synonyms (ie. {'yes':'yep', 'ok'}).
But since the subclass calls the superclass's __init__(), which in turn creates another subclass, loops ensue. Not calling the superclass's __init__() works just fine, but I'm concerned that's merely a lucky coincidence, and that my Thesaurus class may eventually be modified to require it's parent __init__().
Advice?
Well, I'm stopping to look at your code, and I'll just base my answer on what you say:
I have a base class that virtually every other class in my app extends (just some basic conventions for functionality within the app; perhaps should just be an interface).
this would be ThesaurusBase in the code below
This base class is meant to house a singleton of a Thesaurus class that grants some flexibility with user input by inferring some synonyms (ie. {'yes':'yep', 'ok'}).
That would be ThesaurusSingleton, that you can call with a better name and make it actually useful.
class ThesaurusBase():
def __init__(self, singleton=None):
self.singleton = singleton
def mymethod1(self):
raise NotImplementedError
def mymethod2(self):
raise NotImplementedError
class ThesaurusSingleton(ThesaurusBase):
def mymethod1(self):
return "meaw!"
class Thesaurus(TheraususBase):
def __init__(self, singleton=None):
TheraususBase.__init__(self, singleton)
def mymethod1(self):
return "quack!"
def mymethod2(self):
return "\\_o<"
now you can create your objects as follows:
singleton = ThesaurusSingleton()
thesaurus = Thesaurus(singleton)
edit:
Basically, what I've done here is build a "Base" class that is just an interface defining an expected behavior for all its children classes. The class ThesaurusSingleton (I know that's a terrible name) is also implementing that interface, because you said it had too and I did not want to discuss your design, you may always have good reasons for weird constraints.
And finally, do you really need to instantiate your singleton inside the class that is defining the singleton object? Though there may be some hackish way to do so, there's often a better design that avoids the "hackish" part.
What I think is that however you create your singleton, you should better do it explicitly. That's in the "Zen of python": explicit is better than implicit. Why? because then people reading your code (and that might be you in six months) will be able to understand what's happening and what you were thinking when you wrote that code. If you try to make things more implicit (like using sophisticated meta classes and weird self-inheritance) you may wonder what this code does in less than three weeks!
I'm not telling to avoid that kind of options, but to only use sophisticated stuff when you're out of simple ones!
Based on what you said I think the solution I gave can be a starting point. But as you focus on some obscure, yet not very useful hackish stuff instead of talking about your design, I can't be sure if my example is that appropriate, and hint you on the design.
edit2:
There's an another way to achieve what you say you want (but be sure that's really the design you want). You may want to use a class method that will act on the class itself (instead of the instances) and thus enable you to store a class-wide instance of itself:
>>> class ThesaurusBase:
... #classmethod
... def initClassWide(cls):
... cls._shared = cls()
...
>>> class T(ThesaurusBase):
... def foo(self):
... print self._shared
...
>>> ThesaurusBase.initClassWide()
>>> t = T()
>>> t.foo()
<__main__.ThesaurusBase instance at 0x7ff299a7def0>
and you can call the initClassWide method at the module level of where you declare ThesaurusBase, so whenever you import that module, it will have the singleton loaded (the import mechanism ensuring that python modules are run only once).
the short answer is:
do not instantiate an instance of a sub class from the super class constructor
longer answer:
if the motive you have to try to do this is the fact the Thesaurus is a singleton then you'll be better off exposing the singleton using a static method in the class (Thesaurus) and calling this method when you need the singleton

Subclasses vs Mixins in Python [duplicate]

In Programming Python, Mark Lutz mentions the term mixin. I am from a C/C++/C# background and I have not heard the term before. What is a mixin?
Reading between the lines of this example (which I have linked to because it is quite long), I am presuming it is a case of using multiple inheritance to extend a class as opposed to proper subclassing. Is this right?
Why would I want to do that rather than put the new functionality into a subclass? For that matter, why would a mixin/multiple inheritance approach be better than using composition?
What separates a mixin from multiple inheritance? Is it just a matter of semantics?
A mixin is a special kind of multiple inheritance. There are two main situations where mixins are used:
You want to provide a lot of optional features for a class.
You want to use one particular feature in a lot of different classes.
For an example of number one, consider werkzeug's request and response system. I can make a plain old request object by saying:
from werkzeug import BaseRequest
class Request(BaseRequest):
pass
If I want to add accept header support, I would make that
from werkzeug import BaseRequest, AcceptMixin
class Request(AcceptMixin, BaseRequest):
pass
If I wanted to make a request object that supports accept headers, etags, authentication, and user agent support, I could do this:
from werkzeug import BaseRequest, AcceptMixin, ETagRequestMixin, UserAgentMixin, AuthenticationMixin
class Request(AcceptMixin, ETagRequestMixin, UserAgentMixin, AuthenticationMixin, BaseRequest):
pass
The difference is subtle, but in the above examples, the mixin classes weren't made to stand on their own. In more traditional multiple inheritance, the AuthenticationMixin (for example) would probably be something more like Authenticator. That is, the class would probably be designed to stand on its own.
First, you should note that mixins only exist in multiple-inheritance languages. You can't do a mixin in Java or C#.
Basically, a mixin is a stand-alone base type that provides limited functionality and polymorphic resonance for a child class. If you're thinking in C#, think of an interface that you don't have to actually implement because it's already implemented; you just inherit from it and benefit from its functionality.
Mixins are typically narrow in scope and not meant to be extended.
[edit -- as to why:]
I suppose I should address why, since you asked. The big benefit is that you don't have to do it yourself over and over again. In C#, the biggest place where a mixin could benefit might be from the Disposal pattern. Whenever you implement IDisposable, you almost always want to follow the same pattern, but you end up writing and re-writing the same basic code with minor variations. If there were an extendable Disposal mixin, you could save yourself a lot of extra typing.
[edit 2 -- to answer your other questions]
What separates a mixin from multiple inheritance? Is it just a matter of semantics?
Yes. The difference between a mixin and standard multiple inheritance is just a matter of semantics; a class that has multiple inheritance might utilize a mixin as part of that multiple inheritance.
The point of a mixin is to create a type that can be "mixed in" to any other type via inheritance without affecting the inheriting type while still offering some beneficial functionality for that type.
Again, think of an interface that is already implemented.
I personally don't use mixins since I develop primarily in a language that doesn't support them, so I'm having a really difficult time coming up with a decent example that will just supply that "ahah!" moment for you. But I'll try again. I'm going to use an example that's contrived -- most languages already provide the feature in some way or another -- but that will, hopefully, explain how mixins are supposed to be created and used. Here goes:
Suppose you have a type that you want to be able to serialize to and from XML. You want the type to provide a "ToXML" method that returns a string containing an XML fragment with the data values of the type, and a "FromXML" that allows the type to reconstruct its data values from an XML fragment in a string. Again, this is a contrived example, so perhaps you use a file stream, or an XML Writer class from your language's runtime library... whatever. The point is that you want to serialize your object to XML and get a new object back from XML.
The other important point in this example is that you want to do this in a generic way. You don't want to have to implement a "ToXML" and "FromXML" method for every type that you want to serialize, you want some generic means of ensuring that your type will do this and it just works. You want code reuse.
If your language supported it, you could create the XmlSerializable mixin to do your work for you. This type would implement the ToXML and the FromXML methods. It would, using some mechanism that's not important to the example, be capable of gathering all the necessary data from any type that it's mixed in with to build the XML fragment returned by ToXML and it would be equally capable of restoring that data when FromXML is called.
And.. that's it. To use it, you would have any type that needs to be serialized to XML inherit from XmlSerializable. Whenever you needed to serialize or deserialize that type, you would simply call ToXML or FromXML. In fact, since XmlSerializable is a fully-fledged type and polymorphic, you could conceivably build a document serializer that doesn't know anything about your original type, accepting only, say, an array of XmlSerializable types.
Now imagine using this scenario for other things, like creating a mixin that ensures that every class that mixes it in logs every method call, or a mixin that provides transactionality to the type that mixes it in. The list can go on and on.
If you just think of a mixin as a small base type designed to add a small amount of functionality to a type without otherwise affecting that type, then you're golden.
Hopefully. :)
This answer aims to explain mixins with examples that are:
self-contained: short, with no need to know any libraries to understand the example.
in Python, not in other languages.
It is understandable that there were examples from other languages such as Ruby since the term is much more common in those languages, but this is a Python thread.
It shall also consider the controversial question:
Is multiple inheritance necessary or not to characterize a mixin?
Definitions
I have yet to see a citation from an "authoritative" source clearly saying what is a mixin in Python.
I have seen 2 possible definitions of a mixin (if they are to be considered as different from other similar concepts such as abstract base classes), and people don't entirely agree on which one is correct.
The consensus may vary between different languages.
Definition 1: no multiple inheritance
A mixin is a class such that some method of the class uses a method which is not defined in the class.
Therefore the class is not meant to be instantiated, but rather serve as a base class. Otherwise the instance would have methods that cannot be called without raising an exception.
A constraint which some sources add is that the class may not contain data, only methods, but I don't see why this is necessary. In practice however, many useful mixins don't have any data, and base classes without data are simpler to use.
A classic example is the implementation of all comparison operators from only <= and ==:
class ComparableMixin(object):
"""This class has methods which use `<=` and `==`,
but this class does NOT implement those methods."""
def __ne__(self, other):
return not (self == other)
def __lt__(self, other):
return self <= other and (self != other)
def __gt__(self, other):
return not self <= other
def __ge__(self, other):
return self == other or self > other
class Integer(ComparableMixin):
def __init__(self, i):
self.i = i
def __le__(self, other):
return self.i <= other.i
def __eq__(self, other):
return self.i == other.i
assert Integer(0) < Integer(1)
assert Integer(0) != Integer(1)
assert Integer(1) > Integer(0)
assert Integer(1) >= Integer(1)
# It is possible to instantiate a mixin:
o = ComparableMixin()
# but one of its methods raise an exception:
#o != o
This particular example could have been achieved via the functools.total_ordering() decorator, but the game here was to reinvent the wheel:
import functools
#functools.total_ordering
class Integer(object):
def __init__(self, i):
self.i = i
def __le__(self, other):
return self.i <= other.i
def __eq__(self, other):
return self.i == other.i
assert Integer(0) < Integer(1)
assert Integer(0) != Integer(1)
assert Integer(1) > Integer(0)
assert Integer(1) >= Integer(1)
Definition 2: multiple inheritance
A mixin is a design pattern in which some method of a base class uses a method it does not define, and that method is meant to be implemented by another base class, not by the derived like in Definition 1.
The term mixin class refers to base classes which are intended to be used in that design pattern (TODO those that use the method, or those that implement it?)
It is not easy to decide if a given class is a mixin or not: the method could be just implemented on the derived class, in which case we're back to Definition 1. You have to consider the author's intentions.
This pattern is interesting because it is possible to recombine functionalities with different choices of base classes:
class HasMethod1(object):
def method(self):
return 1
class HasMethod2(object):
def method(self):
return 2
class UsesMethod10(object):
def usesMethod(self):
return self.method() + 10
class UsesMethod20(object):
def usesMethod(self):
return self.method() + 20
class C1_10(HasMethod1, UsesMethod10): pass
class C1_20(HasMethod1, UsesMethod20): pass
class C2_10(HasMethod2, UsesMethod10): pass
class C2_20(HasMethod2, UsesMethod20): pass
assert C1_10().usesMethod() == 11
assert C1_20().usesMethod() == 21
assert C2_10().usesMethod() == 12
assert C2_20().usesMethod() == 22
# Nothing prevents implementing the method
# on the base class like in Definition 1:
class C3_10(UsesMethod10):
def method(self):
return 3
assert C3_10().usesMethod() == 13
Authoritative Python occurrences
At the official documentatiton for collections.abc the documentation explicitly uses the term Mixin Methods.
It states that if a class:
implements __next__
inherits from a single class Iterator
then the class gets an __iter__ mixin method for free.
Therefore at least on this point of the documentation, mixin does not not require multiple inheritance, and is coherent with Definition 1.
The documentation could of course be contradictory at different points, and other important Python libraries might be using the other definition in their documentation.
This page also uses the term Set mixin, which clearly suggests that classes like Set and Iterator can be called Mixin classes.
In other languages
Ruby: Clearly does not require multiple inheritance for mixin, as mentioned in major reference books such as Programming Ruby and The Ruby programming Language
C++: A virtual method that is set =0 is a pure virtual method.
Definition 1 coincides with the definition of an abstract class (a class that has a pure virtual method).
That class cannot be instantiated.
Definition 2 is possible with virtual inheritance: Multiple Inheritance from two derived classes
I think of them as a disciplined way of using multiple inheritance - because ultimately a mixin is just another python class that (might) follow the conventions about classes that are called mixins.
My understanding of the conventions that govern something you would call a Mixin are that a Mixin:
adds methods but not instance variables (class constants are OK)
only inherits from object (in Python)
That way it limits the potential complexity of multiple inheritance, and makes it reasonably easy to track the flow of your program by limiting where you have to look (compared to full multiple inheritance). They are similar to ruby modules.
If I want to add instance variables (with more flexibility than allowed for by single inheritance) then I tend to go for composition.
Having said that, I have seen classes called XYZMixin that do have instance variables.
What separates a mixin from multiple inheritance? Is it just a matter of semantics?
A mixin is a limited form of multiple inheritance. In some languages the mechanism for adding a mixin to a class is slightly different (in terms of syntax) from that of inheritance.
In the context of Python especially, a mixin is a parent class that provides functionality to subclasses but is not intended to be instantiated itself.
What might cause you to say, "that's just multiple inheritance, not really a mixin" is if the class that might be confused for a mixin can actually be instantiated and used - so indeed it is a semantic, and very real, difference.
Example of Multiple Inheritance
This example, from the documentation, is an OrderedCounter:
class OrderedCounter(Counter, OrderedDict):
'Counter that remembers the order elements are first encountered'
def __repr__(self):
return '%s(%r)' % (self.__class__.__name__, OrderedDict(self))
def __reduce__(self):
return self.__class__, (OrderedDict(self),)
It subclasses both the Counter and the OrderedDict from the collections module.
Both Counter and OrderedDict are intended to be instantiated and used on their own. However, by subclassing them both, we can have a counter that is ordered and reuses the code in each object.
This is a powerful way to reuse code, but it can also be problematic. If it turns out there's a bug in one of the objects, fixing it without care could create a bug in the subclass.
Example of a Mixin
Mixins are usually promoted as the way to get code reuse without potential coupling issues that cooperative multiple inheritance, like the OrderedCounter, could have. When you use mixins, you use functionality that isn't as tightly coupled to the data.
Unlike the example above, a mixin is not intended to be used on its own. It provides new or different functionality.
For example, the standard library has a couple of mixins in the socketserver library.
Forking and threading versions of each type of server can be created
using these mix-in classes. For instance, ThreadingUDPServer is
created as follows:
class ThreadingUDPServer(ThreadingMixIn, UDPServer):
pass
The mix-in class comes first, since it overrides a method defined in
UDPServer. Setting the various attributes also changes the behavior of
the underlying server mechanism.
In this case, the mixin methods override the methods in the UDPServer object definition to allow for concurrency.
The overridden method appears to be process_request and it also provides another method, process_request_thread. Here it is from the source code:
class ThreadingMixIn:
"""Mix-in class to handle each request in a new thread."""
# Decides how threads will act upon termination of the
# main process
daemon_threads = False
def process_request_thread(self, request, client_address):
"""Same as in BaseServer but as a thread.
In addition, exception handling is done here.
"""
try:
self.finish_request(request, client_address)
except Exception:
self.handle_error(request, client_address)
finally:
self.shutdown_request(request)
def process_request(self, request, client_address):
"""Start a new thread to process the request."""
t = threading.Thread(target = self.process_request_thread,
args = (request, client_address))
t.daemon = self.daemon_threads
t.start()
A Contrived Example
This is a mixin that is mostly for demonstration purposes - most objects will evolve beyond the usefulness of this repr:
class SimpleInitReprMixin(object):
"""mixin, don't instantiate - useful for classes instantiable
by keyword arguments to their __init__ method.
"""
__slots__ = () # allow subclasses to use __slots__ to prevent __dict__
def __repr__(self):
kwarg_strings = []
d = getattr(self, '__dict__', None)
if d is not None:
for k, v in d.items():
kwarg_strings.append('{k}={v}'.format(k=k, v=repr(v)))
slots = getattr(self, '__slots__', None)
if slots is not None:
for k in slots:
v = getattr(self, k, None)
kwarg_strings.append('{k}={v}'.format(k=k, v=repr(v)))
return '{name}({kwargs})'.format(
name=type(self).__name__,
kwargs=', '.join(kwarg_strings)
)
and usage would be:
class Foo(SimpleInitReprMixin): # add other mixins and/or extend another class here
__slots__ = 'foo',
def __init__(self, foo=None):
self.foo = foo
super(Foo, self).__init__()
And usage:
>>> f1 = Foo('bar')
>>> f2 = Foo()
>>> f1
Foo(foo='bar')
>>> f2
Foo(foo=None)
I think previous responses defined very well what MixIns are. However,
in order to better understand them, it might be useful to compare MixIns with Abstract Classes and Interfaces from the code/implementation perspective:
1. Abstract Class
Class that needs to contain one or more abstract methods
Abstract Class can contain state (instance variables) and non-abstract methods
2. Interface
Interface contains abstract methods only (no non-abstract methods and no internal state)
3. MixIns
MixIns (like Interfaces) do not contain internal state (instance variables)
MixIns contain one or more non-abstract methods (they can contain non-abstract methods unlike interfaces)
In e.g. Python these are just conventions, because all of the above are defined as classes. However, the common feature of both Abstract Classes, Interfaces and MixIns is that they should not exist on their own, i.e. should not be instantiated.
Mixins is a concept in Programming in which the class provides functionalities but it is not meant to be used for instantiation. Main purpose of Mixins is to provide functionalities which are standalone and it would be best if the mixins itself do not have inheritance with other mixins and also avoid state. In languages such as Ruby, there is some direct language support but for Python, there isn't. However, you could used multi-class inheritance to execute the functionality provided in Python.
I watched this video http://www.youtube.com/watch?v=v_uKI2NOLEM to understand the basics of mixins. It is quite useful for a beginner to understand the basics of mixins and how they work and the problems you might face in implementing them.
Wikipedia is still the best: http://en.wikipedia.org/wiki/Mixin
I think there have been some good explanations here but I wanted to provide another perspective.
In Scala, you can do mixins as has been described here but what is very interesting is that the mixins are actually 'fused' together to create a new kind of class to inherit from. In essence, you do not inherit from multiple classes/mixins, but rather, generate a new kind of class with all the properties of the mixin to inherit from. This makes sense since Scala is based on the JVM where multiple-inheritance is not currently supported (as of Java 8). This mixin class type, by the way, is a special type called a Trait in Scala.
It's hinted at in the way a class is defined:
class NewClass extends FirstMixin with SecondMixin with ThirdMixin
...
I'm not sure if the CPython interpreter does the same (mixin class-composition) but I wouldn't be surprised. Also, coming from a C++ background, I would not call an ABC or 'interface' equivalent to a mixin -- it's a similar concept but divergent in use and implementation.
I'd advise against mix-ins in new Python code, if you can find any other way around it (such as composition-instead-of-inheritance, or just monkey-patching methods into your own classes) that isn't much more effort.
In old-style classes you could use mix-ins as a way of grabbing a few methods from another class. But in the new-style world everything, even the mix-in, inherits from object. That means that any use of multiple inheritance naturally introduces MRO issues.
There are ways to make multiple-inheritance MRO work in Python, most notably the super() function, but it means you have to do your whole class hierarchy using super(), and it's considerably more difficult to understand the flow of control.
Perhaps a couple of examples will help.
If you're building a class and you want it to act like a dictionary, you can define all the various __ __ methods necessary. But that's a bit of a pain. As an alternative, you can just define a few, and inherit (in addition to any other inheritance) from UserDict.DictMixin (moved to collections.DictMixin in py3k). This will have the effect of automatically defining all the rest of the dictionary api.
A second example: the GUI toolkit wxPython allows you to make list controls with multiple columns (like, say, the file display in Windows Explorer). By default, these lists are fairly basic. You can add additional functionality, such as the ability to sort the list by a particular column by clicking on the column header, by inheriting from ListCtrl and adding appropriate mixins.
It's not a Python example but in the D programing language the term mixin is used to refer to a construct used much the same way; adding a pile of stuff to a class.
In D (which by the way doesn't do MI) this is done by inserting a template (think syntactically aware and safe macros and you will be close) into a scope. This allows for a single line of code in a class, struct, function, module or whatever to expand to any number of declarations.
OP mentioned that he/she never heard of mixin in C++, perhaps that is because they are called Curiously Recurring Template Pattern (CRTP) in C++. Also, #Ciro Santilli mentioned that mixin is implemented via abstract base class in C++. While abstract base class can be used to implement mixin, it is an overkill as the functionality of virtual function at run-time can be achieved using template at compile time without the overhead of virtual table lookup at run-time.
The CRTP pattern is described in detail here
I have converted the python example in #Ciro Santilli's answer into C++ using template class below:
#include <iostream>
#include <assert.h>
template <class T>
class ComparableMixin {
public:
bool operator !=(ComparableMixin &other) {
return ~(*static_cast<T*>(this) == static_cast<T&>(other));
}
bool operator <(ComparableMixin &other) {
return ((*(this) != other) && (*static_cast<T*>(this) <= static_cast<T&>(other)));
}
bool operator >(ComparableMixin &other) {
return ~(*static_cast<T*>(this) <= static_cast<T&>(other));
}
bool operator >=(ComparableMixin &other) {
return ((*static_cast<T*>(this) == static_cast<T&>(other)) || (*(this) > other));
}
protected:
ComparableMixin() {}
};
class Integer: public ComparableMixin<Integer> {
public:
Integer(int i) {
this->i = i;
}
int i;
bool operator <=(Integer &other) {
return (this->i <= other.i);
}
bool operator ==(Integer &other) {
return (this->i == other.i);
}
};
int main() {
Integer i(0) ;
Integer j(1) ;
//ComparableMixin<Integer> c; // this will cause compilation error because constructor is protected.
assert (i < j );
assert (i != j);
assert (j > i);
assert (j >= i);
return 0;
}
EDIT: Added protected constructor in ComparableMixin so that it can only be inherited and not instantiated. Updated the example to show how protected constructor will cause compilation error when an object of ComparableMixin is created.
The concept comes from Steve’s Ice Cream, an ice cream store founded by Steve Herrell in Somerville, Massachusetts, in 1973, where mix-ins (candies, cakes, etc.) were mixed into basic ice cream flavors (vanilla, chocolate, etc.).
Inspired by Steve’s Ice Cream, the designers of the Lisp object system Flavors included the concept in a programming language for the first time, where mix-ins were small helper classes designed for enhancing other classes, and flavors were large standalone classes.
So the main idea is that a mix-in is a reusable extension (’reusable’ as opposed to ‘exclusive’; ‘extension’ as opposed to ‘base’).
The concept is orthogonal to the concepts of single or multiple inheritance and abstract or concrete class. Mix-in classes can be used in single or multiple inheritance and can be abstract or concrete classes. Mix-in classes have incomplete interfaces while abstract classes have incomplete implementations and concrete classes have complete implementations.
Mix-in class names are conventionally suffixed with ‘-MixIn’, ‘-able’, or ‘-ible’ to emphasize their nature, like in the Python standard library with the ThreadingMixIn and ForkingMixIn classes of the socketserver module, and the Hashable, Iterable, Callable, Awaitable, AsyncIterable, and Reversible classes of the collections.abc module.
Here is an example of a mix-in class used for extending the Python built-in list and dict classes with logging capability:
import logging
class LoggingMixIn:
def __setitem__(self, key, value):
logging.info('Setting %r to %r', key, value)
super().__setitem__(key, value)
def __delitem__(self, key):
logging.info('Deleting %r', key)
super().__delitem__(key)
class LoggingList(LoggingMixIn, list):
pass
class LoggingDict(LoggingMixIn, dict):
pass
>>> logging.basicConfig(level=logging.INFO)
>>> l = LoggingList([False])
>>> d = LoggingDict({'a': False})
>>> l[0] = True
INFO:root:Setting 0 to True
>>> d['a'] = True
INFO:root:Setting 'a' to True
>>> del l[0]
INFO:root:Deleting 0
>>> del d['a']
INFO:root:Deleting 'a'
mixin gives a way to add functionality in a class, i.e you can interact with methods defined in a module by including the module inside the desired class. Though ruby doesn't supports multiple inheritance but provides mixin as an alternative to achieve that.
here is an example that explains how multiple inheritance is achieved using mixin.
module A # you create a module
def a1 # lets have a method 'a1' in it
end
def a2 # Another method 'a2'
end
end
module B # let's say we have another module
def b1 # A method 'b1'
end
def b2 #another method b2
end
end
class Sample # we create a class 'Sample'
include A # including module 'A' in the class 'Sample' (mixin)
include B # including module B as well
def S1 #class 'Sample' contains a method 's1'
end
end
samp = Sample.new # creating an instance object 'samp'
# we can access methods from module A and B in our class(power of mixin)
samp.a1 # accessing method 'a1' from module A
samp.a2 # accessing method 'a2' from module A
samp.b1 # accessing method 'b1' from module B
samp.b2 # accessing method 'a2' from module B
samp.s1 # accessing method 's1' inside the class Sample
I just used a python mixin to implement unit testing for python milters. Normally, a milter talks to an MTA, making unit testing difficult. The test mixin overrides methods that talk to the MTA, and create a simulated environment driven by test cases instead.
So, you take an unmodified milter application, like spfmilter, and mixin TestBase, like this:
class TestMilter(TestBase,spfmilter.spfMilter):
def __init__(self):
TestBase.__init__(self)
spfmilter.config = spfmilter.Config()
spfmilter.config.access_file = 'test/access.db'
spfmilter.spfMilter.__init__(self)
Then, use TestMilter in the test cases for the milter application:
def testPass(self):
milter = TestMilter()
rc = milter.connect('mail.example.com',ip='192.0.2.1')
self.assertEqual(rc,Milter.CONTINUE)
rc = milter.feedMsg('test1',sender='good#example.com')
self.assertEqual(rc,Milter.CONTINUE)
milter.close()
http://pymilter.cvs.sourceforge.net/viewvc/pymilter/pymilter/Milter/test.py?revision=1.6&view=markup
Maybe an example from ruby can help:
You can include the mixin Comparable and define one function "<=>(other)", the mixin provides all those functions:
<(other)
>(other)
==(other)
<=(other)
>=(other)
between?(other)
It does this by invoking <=>(other) and giving back the right result.
"instance <=> other" returns 0 if both objects are equal, less than 0 if instance is bigger than other and more than 0 if other is bigger.
I read that you have a c# background. So a good starting point might be a mixin implementation for .NET.
You might want to check out the codeplex project at http://remix.codeplex.com/
Watch the lang.net Symposium link to get an overview. There is still more to come on documentation on codeplex page.
regards
Stefan
Roughly summarizing all great answers above:
                States        /     Methods
Concrete Method
Abstract Method
Concrete State
Class
Abstract Class
Abstract State
Mixin
Interface

Dynamic sub-classing in Python

I have a number of atomic classes (Components/Mixins, not really sure what to call them) in a library I'm developing, which are meant to be subclassed by applications. This atomicity was created so that applications can only use the features that they need, and combine the components through multiple inheritance.
However, sometimes this atomicity cannot be ensured because some component may depend on another one. For example, imagine I have a component that gives a graphical representation to an object, and another component which uses this graphical representation to perform some collision checking. The first is purely atomic, however the latter requires that the current object already subclassed this graphical representation component, so that its methods are available to it. This is a problem, because we have to somehow tell the users of this library, that in order to use a certain Component, they also have to subclass this other one. We could make this collision component sub class the visual component, but if the user also subclasses this visual component, it wouldn't work because the class is not on the same level (unlike a simple diamond relationship, which is desired), and would give the cryptic meta class errors which are hard to understand for the programmer.
Therefore, I would like to know if there is any cool way, through maybe metaclass redefinition or using class decorators, to mark these unatomic components, and when they are subclassed, the additional dependency would be injected into the current object, if its not yet available. Example:
class AtomicComponent(object):
pass
#depends(AtomicComponent) # <- something like this?
class UnAtomicComponent(object):
pass
class UserClass(UnAtomicComponent): #automatically includes AtomicComponent
pass
class UserClass2(AtomicComponent, UnAtomicComponent): #also works without problem
pass
Can someone give me an hint on how I can do this? or if it is even possible...
edit:
Since it is debatable that the meta class solution is the best one, I'll leave this unaccepted for 2 days.
Other solutions might be to improve error messages, for example, doing something like UserClass2 would give an error saying that UnAtomicComponent already extends this component. This however creates the problem that it is impossible to use two UnAtomicComponents, given that they would subclass object on different levels.
"Metaclasses"
This is what they are for! At time of class creation, the class parameters run through the
metaclass code, where you can check the bases and change then, for example.
This runs without error - though it does not preserve the order of needed classes
marked with the "depends" decorator:
class AutoSubclass(type):
def __new__(metacls, name, bases, dct):
new_bases = set()
for base in bases:
if hasattr(base, "_depends"):
for dependence in base._depends:
if not dependence in bases:
new_bases.add(dependence)
bases = bases + tuple(new_bases)
return type.__new__(metacls, name, bases, dct)
__metaclass__ = AutoSubclass
def depends(*args):
def decorator(cls):
cls._depends = args
return cls
return decorator
class AtomicComponent:
pass
#depends(AtomicComponent) # <- something like this?
class UnAtomicComponent:
pass
class UserClass(UnAtomicComponent): #automatically includes AtomicComponent
pass
class UserClass2(AtomicComponent, UnAtomicComponent): #also works without problem
pass
(I removed inheritance from "object", as I declared a global __metaclass__ variable. All classs will still be new style class and have this metaclass. Inheriting from object or another class does override the global __metaclass__variable, and a class level __metclass__ will have to be declared)
-- edit --
Without metaclasses, the way to go is to have your classes to properly inherit from their dependencies. Tehy will no longer be that "atomic", but, since they could not work being that atomic, it may be no matter.
In the example bellow, classes C and D would be your User classes:
>>> class A(object): pass
...
>>> class B(A, object): pass
...
>>>
>>> class C(B): pass
...
>>> class D(B,A): pass
...
>>>

Categories

Resources