Python matplotlib adjust colormap - python

This is what I want to create.
This is what I get.
This is the code I have written.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
x = np.linspace(-90, 90, 181)
y = np.linspace(-90, 90, 181)
x_grid, y_grid = np.meshgrid(x, y)
z = np.e**x_grid
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection="3d")
ax.plot_surface(x_grid, y_grid, z, cmap=cm.rainbow)
I also tried to normalize z and the colormap.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
import matplotlib as mpl
x = np.linspace(-90, 90, 181)
y = np.linspace(-90, 90, 181)
x_grid, y_grid = np.meshgrid(x, y)
z = np.e**x_grid
cmap = mpl.cm.rainbow
norm = mpl.colors.Normalize(vmin=0, vmax=1)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection="3d")
ax.plot_surface(x_grid, y_grid, z/np.max(z), norm=norm, cmap=cm.rainbow)
Question: How can I adjust the colormap to make it less discrete and more continuous for these simultaneously tiny and large values in z?

Welcome to Stackoverflow!!
Your problem is related to the fact that you are working with exponential numbers, but you're using a linear colormap. For x=90 you have z=1.2e+39, reaaaally large.
You were very close with your second attempt! I just changed 1 line in there, instead of
norm = mpl.colors.Normalize(vmin=0, vmax=1)
I used
norm = mpl.colors.LogNorm()
And the result I got was the following:
Now, you can tweak this as much as you like in order to get the colors you want :) Just don't forget that your colormap should be normalized in a logarithmic fashion, so that it counters the exponential behaviour of your function in this case.
Hope this helps!

Related

Plotting a curve on the mesh surface along only a determined axis

I'm very new in Python and trying to plot a single curve on a surface.
Here is where I came so far and plotted a surface in s domain:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import cmath
x = np.linspace(-400, 0, 100)
y = np.linspace(-100, 100, 100)
X, Y = np.meshgrid(x,y)
fc=50
wc=2*np.pi*fc
s = X + Y*1j
Z= abs(1/(1+s/wc))
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X, Y, Z)
ax.plot(X, Y, Z)
plt.ylabel('Im')
plt.show()
I now need to plot the curve for X = 0 in different color which means the curve on the same surface along the imaginary axis. surf = ax.plot_surface(0, Y, Z) did not work. Does anybody have experience with such plot?
I'm assuming you meant you wanted to plot y=0 instead of x=0 (since x=0 would be pretty boring).
Since you want to plot a single slice of your data, you can't use the meshgrid format (or if you can, it would require some weird indexing that I don't want to figure out).
Here's how I would plot the y=0 slice:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import cmath
x = np.linspace(-400, 0, 100)
y = np.linspace(-100, 100, 100)
X, Y = np.meshgrid(x,y)
fc=50
wc=2*np.pi*fc
s = X + Y*1j
Z= abs(1/(1+s/wc))
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X, Y, Z)
# create data for y=0
z = abs(1/(1+x/wc))
ax.plot(x,np.zeros(np.shape(x)),z)
plt.ylabel('Im')
plt.show()

Way of plotting data into boxes instead of pyramids using mplot3d

So I have an array of values that I am trying to plot using the plot_surface command. Specifically I have a 30x30 array with one in the middle and zeros elsewhere. When I plot it this is what I obtain:
I would like however for the value to be represented as a cuboid. Is that possible?
Thank you
edit: Code that shows the figure
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
N=30
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = y = np.arange(0, N)
z = np.zeros((N,N))
z[15,15] = 1
X, Y = np.meshgrid(x, y)
ax.plot_surface(X, Y, z, cmap='YlOrBr')
plt.show(block=False)
I think a 3D bar plot will give what you're looking for.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
N=30
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = y = np.arange(0, N)
z_bottom = np.zeros((N,N))
z_top = z_bottom.copy()
z_top[15,15] = 1
X, Y = np.meshgrid(x, y)
ax.bar3d(X.ravel(), Y.ravel(), z_bottom.ravel(), 1, 1, z_top.ravel())
plt.show(block=False)
The full documentation is here if you want to play with the colors and so forth.

Changing position of axes in Axes3D

I am using mplot3d from the mpl_toolkits library. When displaying the 3D surface on the figure I'm realized the axis were not positioned as I wished they would.
Let me show, I have added to the following screenshot the position of each axis:
Is there a way to change the position of the axes in order to get this result:
Here's the working code:
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
ax = Axes3D(plt.figure())
def f(x,y) :
return -x**2 - y**2
X = np.arange(-1, 1, 0.02)
Y = np.arange(-1, 1, 0.02)
X, Y = np.meshgrid(X, Y)
Z = f(X, Y)
ax.plot_surface(X, Y, Z, alpha=0.5)
# Hide axes ticks
ax.set_xticks([-1,1])
ax.set_yticks([-1,1])
ax.set_zticks([-2,0])
ax.set_yticklabels([-1,1],rotation=-15, va='center', ha='right')
plt.show()
I have tried using xaxis.set_ticks_position('left') statement, but it doesn't work.
No documented methods, but with some hacking ideas from https://stackoverflow.com/a/15048653/1149007 you can.
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = ax = fig.add_subplot(111, projection='3d')
ax.view_init(30, 30)
def f(x,y) :
return -x**2 - y**2
X = np.arange(-1, 1, 0.02)
Y = np.arange(-1, 1, 0.02)
X, Y = np.meshgrid(X, Y)
Z = f(X, Y)
ax.plot_surface(X, Y, Z, alpha=0.5)
# Hide axes ticks
ax.set_xticks([-1,1])
ax.set_yticks([-1,1])
ax.set_zticks([-2,0])
ax.xaxis._axinfo['juggled'] = (0,0,0)
ax.yaxis._axinfo['juggled'] = (1,1,1)
ax.zaxis._axinfo['juggled'] = (2,2,2)
plt.show()
I can no idea of the meaning of the third number in triples. If set zeros nothing changes in the figure. So should look in the code for further tuning.
You can also look at related question Changing position of vertical (z) axis of 3D plot (Matplotlib)? with low level hacking of _PLANES property.
Something changed, code blow doesn't work, all axis hide...
ax.xaxis._axinfo['juggled'] = (0,0,0)
ax.yaxis._axinfo['juggled'] = (1,1,1)
ax.zaxis._axinfo['juggled'] = (2,2,2)
I suggest using the plot function to create a graph

apply color map to mpl_toolkits.mplot3d.Axes3D.bar3d

There is a 'color' argument to Axes3D's bar3d function which can accept arrays to color individual bars different colors - but how would I apply a color map (i.e. cmap = cm.jet) in the same way as a plot_surface function for example ? This would make a bar of a certain height a color which reflects its height.
http://matplotlib.sourceforge.net/examples/mplot3d/hist3d_demo.html
http://matplotlib.sourceforge.net/mpl_toolkits/mplot3d/api.html
Following up the answer provided by Ferguzz, here is a more complete/up-to-date solution:
import matplotlib.colors as colors
import matplotlib.cm as cm
dz = height_values
offset = dz + np.abs(dz.min())
fracs = offset.astype(float)/offset.max()
norm = colors.Normalize(fracs.min(), fracs.max())
color_values = cm.jet(norm(fracs.tolist()))
ax.bar3d(xpos,ypos,zpos,1,1,dz, color=color_values)
Please pay attention to the following points:
You should have all variables (such as xpos, ypos) defined similar to the code in https://matplotlib.org/examples/pylab_examples/hist_colormapped.html
normalize() is now Normalize()
fracs is in type Series (from pandas) and must be converted to list
Here is my solution:
offset = dz + np.abs(dz.min())
fracs = offset.astype(float)/offset.max()
norm = colors.normalize(fracs.min(), fracs.max())
colors = cm.jet(norm(fracs))
ax.bar3d(xpos,ypos,zpos,1,1,dz, color=colors)
The first line is only required if your data goes negative.
Code adapted from here http://matplotlib.sourceforge.net/examples/pylab_examples/hist_colormapped.html.
You can pass a color array to the facecolors argument, it can set every patches in the surface a color.
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
colors = np.random.rand(40, 40, 4)
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, facecolors=colors,
linewidth=0, antialiased=False)
ax.set_zlim(-1.01, 1.01)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
plt.show()

Normalizing colors in matplotlib

I am trying to plot a surface using matplotlib using the code below:
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import axes3d, Axes3D
import pylab as p
vima=0.5
fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.arange(0, 16.67, vima)
Y = np.arange(0, 12.5, vima)
X, Y = np.meshgrid(X, Y)
Z = np.sqrt(((1.2*Y+0.6*X)**2+(0.2*Y+1.6*X)**2)/(0.64*Y**2+0.36*X**2))
surf = ax.plot_surface(X, Y, Z,rstride=1, cstride=1, alpha=1,cmap=cm.jet, linewidth=0)
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()
If you run it you will see a blue surface, but I want to use the whole color range of jet... I know there is a class "matplotlib.colors.Normalize", but I don't know how to use it. Could you please add the necessary code in order to do it?
I realise that the poster's issue has already been resolved, but the question of normalizing the colors was never dealt with. Since I've figured out how I thought I'd just drop this here for anyone else who might need it.
First you create a norm and pass that to the plotting function, I've tried to add this to the OP's code.
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import axes3d, Axes3D
import pylab as p
import matplotlib
vima=0.5
fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.arange(0, 16.67, vima)
Y = np.arange(0, 12.5, vima)
X, Y = np.meshgrid(X, Y)
Z = np.sqrt(((1.2*Y+0.6*X)**2+(0.2*Y+1.6*X)**2)/(0.64*Y**2+0.36*X**2))
Z = np.nan_to_num(Z)
# Make the norm
norm = matplotlib.colors.Normalize(vmin = np.min(Z), vmax = np.max(Z), clip = False)
# Plot with the norm
surf = ax.plot_surface(X, Y, Z,rstride=1, cstride=1, norm=norm, alpha=1,cmap=cm.jet, linewidth=0)
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()
The norm works the same way for the "imshow" command.
As JoshAdel noted in a comment (credit belongs to him), it appears that the surface plot is improperly ranging the colormap when a NaN is in the Z array. A simple work-around is to simply convert the NaN's to zero or very large or very small numbers so that the colormap can be normalized to the z-axis range.
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import axes3d, Axes3D
import pylab as p
vima=0.5
fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.arange(0, 16.67, vima)
Y = np.arange(0, 12.5, vima)
X, Y = np.meshgrid(X, Y)
Z = np.sqrt(((1.2*Y+0.6*X)**2+(0.2*Y+1.6*X)**2)/(0.64*Y**2+0.36*X**2))
Z = np.nan_to_num(Z) # added this line
surf = ax.plot_surface(X, Y, Z,rstride=1, cstride=1, alpha=1,cmap=cm.jet, linewidth=0)
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()
Replying to an old question, I know, but the answers posted were at least in my case somewhat unsatisfactory. For those still stumbling here, I give a solution that worked for me.
Firstly, I did not want use zeros to replace NaNs, as for me they represent points with missing or undefined data. I'd rather not have anything plotted at these points. Secondly, the whole z range of my data was way above zero, so dotting the plot with zeros would result in an ugly and badly scaled plot.
Solution given by leifdenby was quite close, so +1 for that (though as pointed out, the explicit normalisation does not add to the earlier solution). I just dropped the NaN-to-zero replacement, and used the functions nanmin and nanmax instead of min and max in the color scale normalisation. These functions give the min and max of an array but simply ignore all NaNs. The code now reads:
# Added colors to the matplotlib import list
from matplotlib import cm, colors
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import axes3d, Axes3D
import pylab as p
vima=0.5
fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.arange(0, 16.67, vima)
Y = np.arange(0, 12.5, vima)
X, Y = np.meshgrid(X, Y)
Z = np.sqrt(((1.2*Y+0.6*X)**2+(0.2*Y+1.6*X)**2)/(0.64*Y**2+0.36*X**2))
# MAIN IDEA: Added normalisation using nanmin and nanmax functions
norm = colors.Normalize(vmin = np.nanmin(Z),
vmax = np.nanmax(Z))
# Added the norm=norm parameter
surf = ax.plot_surface(X, Y, Z,rstride=1, cstride=1, alpha=1, norm=norm, cmap=cm.jet, linewidth=0)
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()
Running this, I get a correctly scaled plot, with the (0, 0) datapoint missing. This is also the behaviour that I find most preferable, as the limit (x, y) to (0, 0) does not seem to exist for the function in question.
This has been my first contribution to StackOverflow, I hope it was a good one (wink).

Categories

Resources