Extracting data as python dict from CSV file - python

how do i extract the data is this CSV as a python dictionary without importing packages?
sample of the data:
User-ID;"ISBN";"Book-Rating"
276725;"034545104X";"0"
276726;"0155061224";"5"
276727;"0446520802";"0"
276729;"052165615X";"3"
def loadRatings():
# Get bookratings
try:
bookR = {}
for line in open('booktext.csv'):
(id,title) = line.split(';')[0:2]
bookR[id] = title
return bookR
except IOError as ioerr:
print('File error: ' + str(ioerr))
print(loadRatings())
but i need my result to be like
bookR = {User-ID: 276725, ISBN: 034545104X, Rating: 0}

this code will return
with open("booktext.csv") as f:
for i, line in enumerate(f):
# skip header
if i == 0:
continue
row_lst = line.replace("\n","").replace('"','').split(";")
if len(row_lst) == 3:
bookR = {
"User-ID": row_lst[0],
"ISBN": row_lst[1],
"Rating": row_lst[2]
}
print(bookR)
{'User-ID': '276725', 'ISBN': '034545104X', 'Rating': '0'}
{'User-ID': '276726', 'ISBN': '0155061224', 'Rating': '5'}
{'User-ID': '276727', 'ISBN': '0446520802', 'Rating': '0'}
{'User-ID': '276729', 'ISBN': '052165615X', 'Rating': '3'}
You always should use context manager with when working with files unless you really know and have a good reason why not to do that. Read more on that on https://stackoverflow.com/a/3012921/20646982

The description is vague in terms of what you are looking for, not clear either it should be a single dict of all items, or just a separate lines. In case you need a normal dict you can use this simple approach with just few formatting later depends on data type you are requiring.
I managed to recreate results like this:
with open('ex.csv',newline="") as f:
d = list(f.read().split(' '))
keys = d[0].split(';')
values = d[1:]
book = {}
for idx, key in enumerate(keys):
book[key] = []
for i in range(len(values)):
book[key].append(values[i].split(';')[idx])
Which produces results:
{'User-ID': ['276725', '276726', '276727', '276729'],
'"ISBN"': ['"034545104X"', '"0155061224"', '"0446520802"', '"052165615X"'],
'"Book-Rating"': ['"0"', '"5"', '"0"', '"3"']}

import csv
filename ="Geeks.csv"
# opening the file using "with"
# statement
with open(filename, 'r') as data:
for line in csv.DictReader(data):
print(line)

Related

Saving and reading kwargs from a file

I know how I can save kwargs in a .txt file.
with open(filename, "w") as file:
for key, value in kwargs.items():
file.write("{}: {}\n".format(key, value))
Let's says kwargs = {'page': 1, 'name': 'xyz', 'title': 'xyz'}
But how can I read the file and save the data back to kwargs how it was before it got saved to the file so that the result is kwargs = {'page': 1, 'name': 'xyz', 'title': 'xyz'} after reading the file?
if you're okay with saving it in a slightly different format, you can use the in-built eval function.
Writing your dictionary to a file:
with open(filename, "w") as file:
file.write(str(kwargs))
Reading your dictionary back from the file:
with open(filename, "r") as file:
kwargs = eval(file.read())
Assuming you aren't concerned about the ambiguities, this would be the inverse of what you presented in your question:
with open(filename, "r") as file:
kwargs = {}
for ln in file:
key, _, value = ln.partition(': ')
if value.isdigit():
value = int(value)
kwargs[key] = value
so here is the simple way to go about that, and before we get to the talk about ambiguity with that its simply to show how you could extract what you save in the file. it will be a key/value pair with key and pair are both strings. to cast the value part into the correct type isn't the scope of the solution
the test.txt content:
foo: bar
bas: buz
the code example:
result = {}
with open("/home/mr/test.txt", "r+") as f:
for line in f.readlines():
k, v = line.replace('\n','').split(':')
result.update({k.strip(): v.strip()})
the content of result dict:
{'foo': 'bar', 'bas': 'buz'}

json to dictionary in python

This is my json file input.
{"Report":{"id":101,"type":"typeA","Replist":[{"rptid":"r001","subrpt":{"subid":74,"subname":"name1","subval":113},"RelsubList":[{"Relid":8,"Relsubdetails":{"Rel_subname":"name8","Rel_Subval":65}},{"Relid":5,"Relsubdetails":{"Rel_subname":"name5","Rel_Subval":40}}],"fldA":30,"fldB":23}]}}
...
I am writing python program to convert the input into the below format in my dictionary.
I am new to python.
Expected output:
out: {"id": "101", "type": "typeA", "rptid": "r001", "subrpt_subid": "74", "subrpt_subname": "name1", "subrpt_subval":"113","Relid":"8","Rel_subname":"name8","Rel_Subval":"65","Relid":"5","Rel_subname":"name5","Rel_Subval":"40","fldA":"30","fldB":"23"
I used the following logic to convert the output till subrpt.
Current output:
out: {'id': '101', 'type': 'typeA', 'rptid': 'r001', 'subrpt_subid': '74', 'subrpt_subname': 'name1', 'subrpt_subval': '113'}
But I am struggling to get the logic of RelsubList(it looks like it has both list and dictionary[{}] ).
please help me to get the logic for the same.
import json
list1 = []
dict1 = {}
dict2 = {}
data_file = "samp1.json"
file = open(data_file)
for line in file:
json_line = json.loads(line)
json_line = json_line["Report"]
dict1["id"]=str(json_line["id"])
dict1["type"] = str(json_line["type"])
json_line = json_line["Replist"]
dict1["rptid"]= str(json_line[0]["rptid"])
dict1["subrpt_subid"] = str(json_line[0]["subrpt"]["subid"])
dict1["subrpt_subname"] = str(json_line[0]["subrpt"]["subname"])
dict1["subrpt_subval"] = str(json_line[0]["subrpt"]["subval"])
print("out:", dict1)
Some of your logic is confusing to me, i.e. why are you doing json.loads(line) in every loop?
Anyway, the following should get you the logic for RealsubList:
import json
f = open("data.json")
data = json.load(f)
for line in data:
relsublist = data["Report"]["Replist"][0]["RelsubList"]
print(relsublist)
Results in:
[{'Relid': 8, 'Relsubdetails': {'Rel_subname': 'name8', 'Rel_Subval': 65}}, {'Relid': 5, 'Relsubdetails': {'Rel_subname': 'name5', 'Rel_Subval': 40}}]
The reason for the [0] index after ["Replist"] is Replist contains an array of nested dictionaries, so you need to call it out by index. In this case its only a single array, so it would be 0

AttributeError: 'dict' object has no attribute 'split'

I am trying to run this code where data of a dictionary is saved in a separate csv file.
Here is the dict:
body = {
'dont-ask-for-email': 0,
'action': 'submit_user_review',
'post_id': 76196,
'email': email_random(),
'subscribe': 1,
'previous_hosting_id': prev_hosting_comp_random(),
'fb_token': '',
'title': review_title_random(),
'summary': summary_random(),
'score_pricing': star_random(),
'score_userfriendly': star_random(),
'score_support': star_random(),
'score_features': star_random(),
'hosting_type': hosting_type_random(),
'author': name_random(),
'social_link': '',
'site': '',
'screenshot[image][]': '',
'screenshot[description][]': '',
'user_data_process_agreement': 1,
'user_email_popup': '',
'subscribe_popup': 1,
'email_asked': 1
}
Now this is the code to write in a CSV file and finally save it:
columns = []
rows = []
chunks = body.split('}')
for chunk in chunks:
row = []
if len(chunk)>1:
entry = chunk.replace('{','').strip().split(',')
for e in entry:
item = e.strip().split(':')
if len(item)==2:
row.append(item[1])
if chunks.index(chunk)==0:
columns.append(item[0])
rows.append(row)
df = pd.DataFrame(rows, columns = columns)
df.head()
df.to_csv ('r3edata.csv', index = False, header = True)
but this is the error I get:
Traceback (most recent call last):
File "codeOffshoreupdated.py", line 125, in <module>
chunks = body.split('}')
AttributeError: 'dict' object has no attribute 'split'
I know that dict has no attribute named split but how do I fix it?
Edit:
format of the CSV I want:
dont-ask-for-email, action, post_id, email, subscribe, previous_hosting_id, fb_token, title, summary, score_pricing, score_userfriendly, score_support, score_features, hosting_type,author, social_link, site, screenshot[image][],screenshot[description][],user_data_process_agreement,user_email_popup,subscribe_popup,email_asked
0,'submit_user_review',76196,email_random(),1,prev_hosting_comp_random(),,review_title_random(),summary_random(),star_random(),star_random(),star_random(),star_random(),hosting_type_random(),name_random(),,,,,1,,1,1
Note: all these functions mentioned are return values
Edit2:
I am picking emails from the email_random() function like this:
def email_random():
with open('emaillist.txt') as emails:
read_emails = csv.reader(emails, delimiter = '\n')
return random.choice(list(read_emails))[0]
and the emaillist.txt is like this:
xyz#gmail.com
xya#gmail.com
xyb#gmail.com
xyc#gmail.com
xyd#gmail.com
other functions are also picking the data from the files like this too.
Since body is a dictionary, you don't have to a any manual parsing to get it into a CSV format.
If you want the function calls (like email_random()) to be written into the CSV as such, you need to wrap them into quotes (as I have done below). If you want them to resolve as function calls and write the results, you can keep them as they are.
import csv
def email_random():
return "john#example.com"
body = {
'dont-ask-for-email': 0,
'action': 'submit_user_review',
'post_id': 76196,
'email': email_random(),
'subscribe': 1,
'previous_hosting_id': "prev_hosting_comp_random()",
'fb_token': '',
'title': "review_title_random()",
'summary': "summary_random()",
'score_pricing': "star_random()",
'score_userfriendly': "star_random()",
'score_support': "star_random()",
'score_features': "star_random()",
'hosting_type': "hosting_type_random()",
'author': "name_random()",
'social_link': '',
'site': '',
'screenshot[image][]': '',
'screenshot[description][]': '',
'user_data_process_agreement': 1,
'user_email_popup': '',
'subscribe_popup': 1,
'email_asked': 1
}
with open('example.csv', 'w') as fhandle:
writer = csv.writer(fhandle)
items = body.items()
writer.writerow([key for key, value in items])
writer.writerow([value for key, value in items])
What we do here is:
with open('example.csv', 'w') as fhandle:
this opens a new file (named example.csv) with writing permissions ('w') and stores the reference into variable fhandle. If using with is not familiar to you, you can learn more about them from this PEP.
body.items() will return an iterable of tuples (this is done to guarantee dictionary items are returned in the same order). The output of this will look like [('dont-ask-for-email', 0), ('action', 'submit_user_review'), ...].
We can then write first all the keys using a list comprehension and to the next row, we write all the values.
This results in
dont-ask-for-email,action,post_id,email,subscribe,previous_hosting_id,fb_token,title,summary,score_pricing,score_userfriendly,score_support,score_features,hosting_type,author,social_link,site,screenshot[image][],screenshot[description][],user_data_process_agreement,user_email_popup,subscribe_popup,email_asked
0,submit_user_review,76196,john#example.com,1,prev_hosting_comp_random(),,review_title_random(),summary_random(),star_random(),star_random(),star_random(),star_random(),hosting_type_random(),name_random(),,,,,1,,1,1

PYTHON JSONtoDICT help needed - It appears python is interpreting my json-dictionary conversion as a list

The following code is giving me the error:
Traceback (most recent call last): File "AMZGetPendingOrders.py", line 66, in <module>
item_list.append(item['SellerSKU']) TypeError: string indices must be integers
The code:
from mws import mws
import time
import json
import xmltodict
access_key = 'xx' #replace with your access key
seller_id = 'yy' #replace with your seller id
secret_key = 'zz' #replace with your secret key
marketplace_usa = '00'
orders_api = mws.Orders(access_key, secret_key, seller_id)
orders = orders_api.list_orders(marketplaceids=[marketplace_usa], orderstatus=('Pending'), fulfillment_channels=('MFN'), created_after='2018-07-01')
#save as XML file
filename = 'c:order.xml'
with open(filename, 'w') as f:
f.write(orders.original)
#ConvertXML to JSON
dictString = json.dumps(xmltodict.parse(orders.original))
#Write new JSON to file
with open("output.json", 'w') as f:
f.write(dictString)
#Read JSON and parse our order number
with open('output.json', 'r') as jsonfile:
data = json.load(jsonfile)
#initialize blank dictionary
id_list = []
for order in data['ListOrdersResponse']['ListOrdersResult']['Orders']['Order']:
id_list.append(order['AmazonOrderId'])
#This "gets" the orderitem info - this code actually is similar to the initial Amazon "get" though it has fewer switches
orders_api = mws.Orders(access_key, secret_key, seller_id)
#opens and empties the orderitem.xml file
open('c:orderitem.xml', 'w').close()
#iterated through the list of AmazonOrderIds and writes the item information to orderitem.xml
for x in id_list:
orders = orders_api.list_order_items(amazon_order_id = x)
filename = 'c:orderitem.xml'
with open(filename, 'a') as f:
f.write(orders.original)
#ConvertXML to JSON
amz_items_pending = json.dumps(xmltodict.parse(orders.original))
#Write new JSON to file
with open("pending.json", 'w') as f:
f.write(amz_items_pending)
#read JSON and parse item_no and qty
with open('pending.json', 'r') as jsonfile1:
data1 = json.load(jsonfile1)
#initialize blank dictionary
item_list = []
for item in data1['ListOrderItemsResponse']['ListOrderItemsResult']['OrderItems']['OrderItem']:
item_list.append(item['SellerSKU'])
#print(item)
#print(id_list)
#print(data1)
#print(item_list)
time.sleep(10)
I don't understand why Python thinks this is a list and not a dictionary. When I print id_list it looks like a dictionary (curly braces, single quotes, colons, etc)
print(data1) shows my dictionary
{
'ListOrderItemsResponse':{
'#xmlns':'https://mws.amazonservices.com/Orders/201 3-09-01',
'ListOrderItemsResult':{
'OrderItems':{
'OrderItem':{
'QuantityOrdered ':'1',
'Title':'Delta Rothko Rolling Bicycle Stand',
'ConditionId':'New',
'Is Gift':'false',
'ASIN':'B00XXXXTIK',
'SellerSKU':'9934638',
'OrderItemId':'49 624373726506',
'ProductInfo':{
'NumberOfItems':'1'
},
'QuantityShipped':'0',
'C onditionSubtypeId':'New'
}
},
'AmazonOrderId':'112-9XXXXXX-XXXXXXX'
},
'ResponseM etadata':{
'RequestId':'8XXXXX8-0866-44a4-96f5-XXXXXXXXXXXX'
}
}
}
Any ideas?
because you are iterating over each key value in dict:
{'QuantityOrdered ': '1', 'Title': 'Delta Rothko Rolling Bicycle Stand', 'ConditionId': 'New', 'Is Gift': 'false', 'ASIN': 'B00XXXXTIK', 'SellerSKU': '9934638', 'OrderItemId': '49 624373726506', 'ProductInfo': {'NumberOfItems': '1'}, 'QuantityShipped': '0', 'C onditionSubtypeId': 'New'}
so first value in item will be 'QuantityOrdered ' and you are trying to access this string as if it is dictionary
you can just do:
id_list.append(data1['ListOrderItemsResponse']['ListOrderItemsResult']['OrderItems']['OrderItem']['SellerSKU']))
and avoid for loop in dictionary
I guess you are trying to iterate OrderItems and finding their SellerSKU values.
for item in data1['ListOrderItemsResponse']['ListOrderItemsResult']['OrderItems']:
item_list.append(item['SellerSKU'])

Python iterate over list and join lines without a special character to the previous item

I'm wondering if anyone has a sort of hacky / cool solution to this problem . I have a text file like so:
NAME:name
ID:id
PERSON:person
LOCATION:location
NAME:name
morenamestuff
ID:id
PERSON:person
LOCATION:location
JUNK
So I have some blocks that all contain lines that can be split into a dict, and some that cannot. How can I take lines without the : character and join them to the previous line? Here's what I'm currently doing
# loop through chunk
# the first element of dat is a Title, so skip that
key_map = dict(x.split(':') for x in dat[1:])
But I of course get an error because the second chunk has a line without the : character. So I wanted my dict to look something like this after correctly splitting it:
# there will be a key_map for each chunk of data
key_map['NAME'] == 'name morenamestuff' # 3rd line appended to previous
key_map['ID'] == 'id'
key_map['PERSON'] = 'person'
key_map['LOCATION'] = 'location
Solution
EDIT: Here's my final solution on github, and the full code here:
parseScript.py
import re
import string
bad_chars = '(){}"<>[] ' # characers we want to strip from the string
key_map = []
# parse file
with open("dat.txt") as f:
data = f.read()
data = data.strip('\n')
data = re.split('}|\[{', data)
# format file
with open("format.dat") as f:
formatData = [x.strip('\n') for x in f.readlines()]
data = filter(len, data)
# strip and split each station
for dat in data[1:-1]:
# perform black magic, don't even try to understand this
dat = dat.translate(string.maketrans("", "", ), bad_chars).split(',')
key_map.append(dict(x.split(':') for x in dat if ':' in x ))
if ':' not in dat[1]:key_map['NAME']+=dat[k][2]
for station in range(0, len(key_map)):
for opt in formatData:
print opt,":",key_map[station][opt]
print ""
dat.txt
View raw here
format.dat
NAME
STID
LONGITUDE
LATITUDE
ELEVATION
STATE
ID
out.dat
View raw here
When in doubt, write your own generator.
Add in itertools.groupby to chunk by groups of text delimited by whitespace breaks.
def chunker(s):
it = iter(s)
out = [next(it)]
for line in it:
if ':' in line or not line:
yield ' '.join(out)
out = []
out.append(line)
if out:
yield ' '.join(out)
usage:
from itertools import groupby
[dict(x.split(':') for x in g) for k,g in groupby(chunker(lines), bool) if k]
Out[65]:
[{'ID': 'id', 'LOCATION': 'location', 'NAME': 'name', 'PERSON': 'person'},
{'ID': 'id',
'LOCATION': 'location',
'NAME': 'name morenamestuff',
'PERSON': 'person'}]
(if those fields are always the same, I'd go with something like creating some namedtuples instead of a bunch of dicts)
from collections import namedtuple
Thing = namedtuple('Thing', 'ID LOCATION NAME PERSON')
[Thing(**dict(x.split(':') for x in g)) for k,g in groupby(chunker(lines), bool) if k]
Out[76]:
[Thing(ID='id', LOCATION='location', NAME='name', PERSON='person'),
Thing(ID='id', LOCATION='location', NAME='name morenamestuff', PERSON='person')]
Here is something that addresses all your requirements. It handles joining of multiple lines, ignoring blank lines, and ignoring junk lines that do not appear within a block. It is implemented as a generator that yields each dictionary as it is completed.
def parser(data):
d = {}
for line in data:
line = line.strip()
if not line:
if d:
yield d
d = {}
else:
if ':' in line:
key, value = line.split(':')
d[key] = value
else:
if d:
d[key] = '{} {}'.format(d[key], line)
if d:
yield d
When run with this data:
ignore me
NAME:name1
ID:id1
PERSON:person1
LOCATION:location1
NAME:name2
morenamestuff
ID:id2
PERSON:person2
LOCATION:location2
junk
and
other
stuff
NAME:name3
morenamestuff
and more
ID:id3
PERSON:person3
more person stuff
LOCATION:location3
JUNK
MORE JUNK
>>> for d in parser(open('data')):
... print d
{'PERSON': 'person1', 'LOCATION': 'location1', 'NAME': 'name1', 'ID': 'id1'}
{'PERSON': 'person2', 'LOCATION': 'location2', 'NAME': 'name2 morenamestuff', 'ID': 'id2'}
{'PERSON': 'person3 more person stuff', 'LOCATION': 'location3', 'NAME': 'name3 morenamestuff and more', 'ID': 'id3'}
You can grab the lot as a list:
>>> results = list(parser(open('data')))
>>> results
[{'PERSON': 'person1', 'LOCATION': 'location1', 'NAME': 'name1', 'ID': 'id1'}, {'PERSON': 'person2', 'LOCATION': 'location2', 'NAME': 'name2 morenamestuff', 'ID': 'id2'}, {'PERSON': 'person3 more person stuff', 'LOCATION': 'location3', 'NAME': 'name3 morenamestuff and more', 'ID': 'id3'}]
I don't find itertools or regex particularly nice to work with, here's a pure-python solution
separator = ':'
output = []
chunk = None
with open('/tmp/stuff.txt') as f:
for line in (x.strip() for x in f):
if not line:
# we are between 'chunks'
chunk, key = None, None
continue
if chunk is None:
# we are at the beginning of a new 'chunk'
chunk, key = {}, None
output.append(chunk)
if separator in line:
key, val = line.split(separator)
chunk[key] = val
else:
chunk[key] += line
not as elegant, as you requested, but this works
dat=[['NAME:name',
'ID:id',
'PERSON:person',
'LOCATION:location'],
['NAME:name',
'morenamestuff',
'ID:id',
'PERSON:person',
'LOCATION:location']]
k=1
key_map = dict(x.split(':') for x in dat[k] if ':' in x )
if ':' not in dat[k][1]:key_map['NAME']+=dat[k][1]
key_map>>
{'ID': 'id',
'LOCATION': 'location',
'NAME': 'namemorenamestuff',
'PERSON': 'person'}
Just add something to lines with no ":".
if line.find(':') == -1:
line=line+':None'
Then you won't get an error.

Categories

Resources