How to convert all column values to dates? - python

I'm trying to convert all data in a column from the below to dates.
Event Date
2020-07-16 00:00:00
31/03/2022, 26/11/2018, 31/01/2028
This is just a small section of the data - there are more columns/rows.
I've tried to split out the cells with multiple values using the below:
df["Event Date"] = df["Event Date"].str.replace(' ', '')
df["Event Date"] = df["Event Date"].str.split(",")
df= df.explode("Event Date")
The issue with this is it sets any cell without a ',' e.g. '2020-07-16 00:00:00' to NaN.
Is there any way to separate the values with a ',' and set the entire column to date types?

You can use combination of split and explode to separate dates and then use infer_datetime_format to convert mixed date types
df = df.assign(dates=df['dates'].str.split(',')).explode('dates')
df
Out[18]:
dates
0 2020-07-16 00:00:00
1 31/03/2022
1 26/11/2018
1 31/01/2028
df.dates = pd.to_datetime(df.dates, infer_datetime_format=True)
df.dates
Out[20]:
0 2020-07-16
1 2022-03-31
1 2018-11-26
1 2028-01-31
Name: dates, dtype: datetime64[ns]

Here is a proposition with pandas.Series.str.split and pandas.Series.explode :
s_dates = (
df["Event Date"]
.str.split(",")
.explode(ignore_index=True)
.apply(pd.to_datetime, dayfirst=True)
)
Output :
0 2020-07-16
1 2022-03-31
2 2018-11-26
3 2028-01-31
Name: Event Date, dtype: datetime64[ns]

Your example table shows mixed date formats in each row. The idea is to try a date parsing technique and then try another if it fails. Using loops and having such wide variations of data types are red flags with a script design. I recommend using datetime and dateutil to handle the dates.
from datetime import datetime
from dateutil import parser
date_strings = ["2020-07-16 00:00:00", "31/03/2022, 26/11/2018, 31/01/2028"] % Get these from your table.
parsed_dates = []
for date_string in date_strings:
try:
# strptime
date_object = datetime.strptime(date_string, "%Y-%m-%d %H:%M:%S")
parsed_dates.append(date_object)
except ValueError:
# parser.parse() and split
date_strings = date_string.split(",")
for date_str in date_strings:
date_str = date_str.strip()
date_object = parser.parse(date_str, dayfirst=True)
parsed_dates.append(date_object)
print(parsed_dates)
Try the code on Trinket: https://trinket.io/python3/95c0d14271

Related

Pandas Date Formatting (With Optional Milliseconds)

I'm getting data from an API and putting it into a Pandas DataFrame. The date column needs formatting into date/time, which I am doing. However the API sometimes returns dates without milliseconds which doesn't match the format pattern. This results in an error:
time data '2020-07-30T15:57:37Z' does not match format '%Y-%m-%dT%H:%M:%S.%fZ' (match)
In this example, how can I format the date column to date/time, so all dates are formatted with milliseconds?
import pandas as pd
dates = {
'date': ['2020-07-30T15:57:37Z', '2020-07-30T15:57:37.1Z']
}
df = pd.DataFrame(dates)
df['date'] = pd.to_datetime(df['date'], format='%Y-%m-%dT%H:%M:%S.%fZ')
print(df)
do it one time with milliseconds included and another time without milliseconds included. use errors='coerce' to return NaT when ValueError occurs.
with_miliseconds = pd.to_datetime(df['date'], format='%Y-%m-%dT%H:%M:%S.%fZ',errors='coerce')
without_miliseconds = pd.to_datetime(df['date'], format='%Y-%m-%dT%H:%M:%SZ',errors='coerce')
the results would be something like this:
with milliseconds:
0 NaT
1 2020-07-30 15:57:37.100
Name: date, dtype: datetime64[ns]
without milliseconds:
0 2020-07-30 15:57:37
1 NaT
Name: date, dtype: datetime64[ns]
then you can fill NaTs of one dataframe with values of the other because they complement each other.
with_miliseconds.fillna(without_miliseconds)
0 2020-07-30 15:57:37.000
1 2020-07-30 15:57:37.100
Name: date, dtype: datetime64[ns]
To have a consistent format in your output DataFrame, you could run a Regex replacement before converting to a df for all values without mills.
dates = {'date': [re.sub(r'Z', '.0Z', date) if '.' not in date else date for date in dates['date']]}
Since only those dates containing a . have mills, we can run the replacements on the others.
After that, everything else is the same as in your code.
Output:
date
0 2020-07-30 15:57:37.000
1 2020-07-30 15:57:37.100
As your date string seems like the standard ISO 8601 you can just avoid the use of the format param. The parser will take into account that miliseconds are optional.
import pandas as pd
dates = {
'date': ['2020-07-30T15:57:37Z', '2020-07-30T15:57:37.1Z']
}
df = pd.DataFrame(dates)
df['date'] = pd.to_datetime(df['date'])
print(df)
date
0 2020-07-30 15:57:37+00:00
1 2020-07-30 15:57:37.100000+00:00

Multiple date formats, towards one proper format

I have a date columns with multiple dates:
Date
2022-01-01 00:00:00
jan 20
january 19
How can I convert them, in a scalable way (without dictionary), to a proper date time format?
I tried:
df['Date_1'] = pd.to_datetime(df['Date'], errors='coerce').astype(str)
df['Date_2'] = pd.to_datetime(df['Date'], errors='coerce', ,yearfirst = False, format = '%B %y')).astype(str)
df['Date1'] = df['Date1'].str.replace('NaT','')
df['Date2'] = df['Date2'].str.replace('NaT','')
Then, I merged the two columns, with:
df['Date3'] = df['Date1'] + df['Date2']
But, this is not working, since I need to create another format (for the not-abbreviation months).
But when adding the logic above, but then changing the %B for %b, it is duplicating some months (like may, which is both: an abbreviation and full month).
I would like to have the end result:
2022-01-01
2020-01-01
2019-01-01
There is no direct way to handle all formats at once.
What you can do is use successive methods. Here I combined the "january 19" and "jan 20" using a regex. You can use additional .fillna(<new_converter>) should you find more formats in the future.
(pd
.to_datetime(df['Date'], errors='coerce')
.fillna(pd.to_datetime(df['Date'].str.replace('([a-z]{3})[a-z]+', r'\1', regex=True),
errors='coerce', yearfirst=False, format='%b %y')
)
)
output:
0 2022-01-01
1 2020-01-01
2 2019-01-01
Name: Date, dtype: datetime64[ns]
Use combine_first to try it with a variety of different date formats:
date = pd.to_datetime(df["Date"], errors="coerce")
for format in ["%b %y", "%B %y"]:
date = date.combine_first(pd.to_datetime(df["Date"], format=format, errors="coerce"))
df["Date"] = date

How to remove hours, minutes, seconds and UTC offset from pandas date column? I'm running with streamlit and pandas

How to remove T00:00:00+05:30 after year, month and date values in pandas? I tried converting the column into datetime but also it's showing the same results, I'm using pandas in streamlit. I tried the below code
df['Date'] = pd.to_datetime(df['Date'])
The output is same as below :
Date
2019-07-01T00:00:00+05:30
2019-07-01T00:00:00+05:30
2019-07-02T00:00:00+05:30
2019-07-02T00:00:00+05:30
2019-07-02T00:00:00+05:30
2019-07-03T00:00:00+05:30
2019-07-03T00:00:00+05:30
2019-07-04T00:00:00+05:30
2019-07-04T00:00:00+05:30
2019-07-05T00:00:00+05:30
Can anyone help me how to remove T00:00:00+05:30 from the above rows?
If I understand correctly, you want to keep only the date part.
Convert date strings to datetime
df = pd.DataFrame(
columns={'date'},
data=["2019-07-01T02:00:00+05:30", "2019-07-02T01:00:00+05:30"]
)
date
0 2019-07-01T02:00:00+05:30
1 2019-07-02T01:00:00+05:30
2 2019-07-03T03:00:00+05:30
df['date'] = pd.to_datetime(df['date'])
date
0 2019-07-01 02:00:00+05:30
1 2019-07-02 01:00:00+05:30
Remove the timezone
df['datetime'] = df['datetime'].dt.tz_localize(None)
date
0 2019-07-01 02:00:00
1 2019-07-02 01:00:00
Keep the date only
df['date'] = df['date'].dt.date
0 2019-07-01
1 2019-07-02
Don't bother with apply to Python dates or string changes. The former will leave you with an object type column and the latter is slow. Just round to the day frequency using the library function.
>>> pd.Series([pd.Timestamp('2000-01-05 12:01')]).dt.round('D')
0 2000-01-06
dtype: datetime64[ns]
If you have a timezone aware timestamp, convert to UTC with no time zone then round:
>>> pd.Series([pd.Timestamp('2019-07-01T00:00:00+05:30')]).dt.tz_convert(None) \
.dt.round('D')
0 2019-07-01
dtype: datetime64[ns]
Pandas doesn't have a builtin conversion to datetime.date, but you could use .apply to achieve this if you want to have date objects instead of string:
import pandas as pd
import datetime
df = pd.DataFrame(
{"date": [
"2019-07-01T00:00:00+05:30",
"2019-07-01T00:00:00+05:30",
"2019-07-02T00:00:00+05:30",
"2019-07-02T00:00:00+05:30",
"2019-07-02T00:00:00+05:30",
"2019-07-03T00:00:00+05:30",
"2019-07-03T00:00:00+05:30",
"2019-07-04T00:00:00+05:30",
"2019-07-04T00:00:00+05:30",
"2019-07-05T00:00:00+05:30"]})
df["date"] = df["date"].apply(lambda x: datetime.datetime.fromisoformat(x).date())
print(df)

Date and time conversion in python pandas

A .csv file has a date column. When read into a pandas DataFrame and displayed, the date and time are displayed as:
2021-06-30 19:39:25
The correct date is 30-06-2021 19:39:25
How can this be changed?
using pandas.to_datetime method to convert date format will be more reliable
df['Date'] = pd.to_datetime(df['Date'] , format = '%d-%m-%Y %H:%M:%S')
Try strftime:
>>> date.strftime('%d-%m-%Y %H:%M:%S')
'30-06-2021 19:39:25'
>>>
try below:
df = pd.DataFrame({'Date':['2021-06-30 19:39:25', '2021-07-22 19:39:25', '2021-08-18 19:39:25']})
# convert `Date` column to datetime
df['Date'] = pd.to_datetime(df['Date'])
Solution:
df['Date'] = pd.to_datetime(df['Date'] , format = '%d-%m-%Y %H:%M:%S')
if the above doesn't work then use belwo..
# Now convert to desired format
df['Date'] = pd.to_datetime(df["Date"].dt.strftime('%m-%d-%Y %H:%M:%S')).dt.strftime('%d-%m-%Y %H:%M:%S')
print(df)
0 30-06-2021 19:39:25
1 22-07-2021 19:39:25
2 18-08-2021 19:39:25
Name: Date, dtype: object

Cannot remove timestamp in datetime

I have this date column which the dtype: object and the format is 31-Mar-20. So i tried to turn it with datetime.strptime into datetime64[D] and with format of 2020-03-31 which somehow whatever i have tried it does not work, i have tried some methode from this and this. In some way, it does turn my column to datetime64 but it has timestamp in it and i don't want it. I need it to be datetime without timestamp and the format is 2020-03-31 This is my code
dates = [datetime.datetime.strptime(ts,'%d-%b-%y').strftime('%Y-%m-%d')
for ts in df['date']]
df['date']= pd.DataFrame({'date': dates})
df = df.sort_values(by=['date'])
This approach might work -
import pandas as pd
df = pd.DataFrame({'dates': ['20-Mar-2020', '21-Mar-2020', '22-Mar-2020']})
df
dates
0 20-Mar-2020
1 21-Mar-2020
2 22-Mar-2020
df['dates'] = pd.to_datetime(df['dates'], format='%d-%b-%Y').dt.date
df
dates
0 2020-03-20
1 2020-03-21
2 2020-03-22
df['date'] = pd.to_datetime(df['date'], format="%d-%b-%y")
This converts it to a datetime, when you look at df it displays values as 2020-03-31 like you want, however these are all datetime objects so if you extract one value with df['date'][0] then you see Timestamp('2020-03-31 00:00:00')
if you want to convert them into a date you can do
df['date'] = [df_datetime.date() for df_datetime in df['date'] ]
There is probably a better way of doing this step.

Categories

Resources