prime number machine and if not working tkinter - python

I am building a machine that can recognize prime numbers individually and show the result to the user,But there is a problem that I showed in the text below
>>12
>>12,is a not prime number
>>7
>>7,is a not prime number
Which prime number and which composite number can be converted into composite numbers
my codes:
from tkinter import *
def rso():
a = int(text.get())
for i in range(a + 1):
pass
if a % i == 1:
Label(app,text=(a,"is a prime number"),font=20).pack()
else:
Label(app,text=(a,"is a NOT prime number"),font=20).pack()
app = Tk()
text = Entry(app,font=20)
text.pack()
Button(app,text="sumbit",font=20,command=rso).pack()
app.mainloop()

Try this:
num = 3
flag = False
if num > 1:
# check for factors
for i in range(2, num):
if (num % i) == 0:
flag = True
break
if flag:
print(f"{num} is not a prime number")
else:
print(f"{num} is a prime number")

Related

First numbers stuck together and horizontal in the label (tkinter)

im makin a machine for prime number,But I want the output of the numbers to be stuck together and horizontal, for example:
>>2,3,5,7,11,13,......
but machine do this:
It is neither horizontal nor joined together
my code:
from tkinter import *
def prime():
a = int(spin.get())
for number in range(a + 1):
if number > 1:
for i in range(2,number):
if (number % i) == 0:
break
else:
Label(app,text=number,).pack()
app = Tk()
app.maxsize(300,300)
app.minsize(300,300)
spin = Entry(app,font=20)
spin.pack()
Button(app,text="prime numbers",command=prime).pack()
app.mainloop()
You can do this by storing the numbers in a list (result) and then joining them at the end.
def prime():
a = int(spin.get())
result = []
for number in range(a + 1):
if number > 1:
for i in range(2,number):
if (number % i) == 0:
break
else:
result.append(str(number))
Label(app, text = ",".join(result)).pack()
The numbers have to be stored as strings so join will work.
Edit
To wrap every 10 numbers, add the following in place of Label(app, ...) after the for loop:
for i in range(0, len(result), 10):
Label(app, text = ",".join(result[i:i+10])).pack()

Why is my Python prime number checker not working?

Why is my code below giving me wrong results? When I give it numbers like 2 and 3, it says they're not prime numbers. Only some numbers work but for the most part it gives wrong answers.
def prompt_input(input_msg, error_msg):
while True:
userinput = input(input_msg)
try:
integer = int(userinput)
if integer > 1:
return integer
print(error_msg)
except ValueError:
print(error_msg)
def check_prime(number):
for i in range(2, number):
if number % i == 0:
return False
return True
primenum = prompt_input(
"Give an integer that's bigger than 1: ",
"You had one job"
)
if check_prime(primenum):
print("This is a prime.")
else:
print("This is not a prime.")
First issue: Your for loop returns after one iteration, so the correct return logic would be:
def check_prime(number):
for i in range(2, number):
if number % i == 0:
return False
return True
However you are implementing this incorrectly as well, the loop needs to iterate up to the sqrt of the number.
def check_prime(number):
for i in range(2, int(sqrt(number))+1):
if number % i == 0:
return False
return True
Hope this helps!
Need to unindent the return True.
def check_prime(number):
for i in range(2, number):
if number % i == 0:
return False
return True

Syntax error in python code to find Prime-factors. Id appreciate if someone could help me

I have been getting a syntax error with code which does prime-factorization
The is this Code
from sys import argv
from os import system, get_terminal_size
from math import sqrt
number = int(argv[1])
width = get_terminal_size().columns
prime_numbers = []
prime_factors = []
_ = system('clear')
print()
def is_prime(n):
for i in range(2, n):
if n % i == 0:
return False
return True
if is_prime(number):
print(f"It is a prime number \nIts only factors are 1 and itself \n1, {number}")
exit()
x = len(str(number))
for i in range(2, int(sqrt(number))):
if is_prime(i):
prime_numbers.append(i)
#print(f"found ")
#print(prime_numbers)
i = 0
while True:
if (number % prime_numbers[i] != 0):
i += 1
continue
prime_factors.append(prime_numbers[i])
print("%2d | %3d".center(width) % (prime_numbers[i], number))
print("_________".center(width))
number /= prime_numbers[i]
if number == 1:
break
print("1".center(width))
print("Answer ")
i = len(prime_factors)
j = 1
for k in prime_factors:
if j == i:
print(k)
break
print(f"{k}", end=" X ")
j += 1
This works for small numbers , less than 4 or 5 digits but gives an index error for bigger ones.
If I remove the sqrt function on line 24 it starts taking too long.
The errors look like this
Traceback (most recent call last):
File "prime-factor.py", line 33, in <module>
if (number % prime_numbers[i] != 0):
IndexError: list index out of range
real 0m0.049s
user 0m0.030s
sys 0m0.014s
(base) Souravs-MacBook-Pro-5:Fun-Math-Algorithms aahaans$ time python3 prime-factor.py 145647
I am unable to resolve this issue, Id appreciate it if you could help me.
No need to rebuild what's already available primePy
from primePy import primes
primes.factors(101463649)
output
[7, 23, 73, 89, 97]
There are two basic issues with the code. One with the for loop for prime numbers, you have to check until int(sqrt(number))+1. And, in the while loop after that, you have to break when the number is below sqrt of the original number, for which another variable should be used. The corrected code is:
from sys import argv
from os import system, get_terminal_size
from math import sqrt
number = int(argv[1])
width = get_terminal_size().columns
prime_numbers = []
prime_factors = []
_ = system('clear')
print()
def is_prime(n):
for i in range(2, n):
if n % i == 0:
return False
return True
if is_prime(number):
print(f"It is a prime number \nIts only factors are 1 and itself \n1, {number}")
exit()
x = len(str(number))
limit = int(sqrt(number))
for i in range(2, limit+1):
if is_prime(i):
prime_numbers.append(i)
i = 0
while True:
if i == len(prime_numbers)-1:
# prime_factors.append(int(number))
break
if (number % prime_numbers[i] != 0):
i += 1
continue
prime_factors.append(prime_numbers[i])
print("%2d | %3d".center(width) % (prime_numbers[i], number))
print("_________".center(width))
number /= prime_numbers[i]
prime_factors.append(int(number))
print("%2d | %3d".center(width) % (number, number))
print("_________".center(width))
print("1".center(width))
print("Answer ")
i = len(prime_factors)
j = 1
for k in prime_factors:
if j == i:
print(k)
break
print(f"{k}", end=" X ")
j += 1
If my explanation wasn't clear, look at the changes in the code.
I wrote a small number factorization engine that can factor numbers.
import math
def LLL(N):
p = 1<<N.bit_length()-1
if N == 2:
return 2
if N == 3:
return 3
s = 4
M = pow(p, 2) - 1
for x in range (1, 100000):
s = (((s * N ) - 2 )) % M
xx = [math.gcd(s, N)] + [math.gcd(s*p+x,N) for x in range(7)] + [math.gcd(s*p-x,N) for x in range(1,7)]
try:
prime = min(list(filter(lambda x: x not in set([1]),xx)))
except:
prime = 1
if prime == 1:
continue
else:
break
#print (s, x, prime, xx)
return prime
Factor:
In [219]: LLL(10142789312725007)
Out[219]: 100711423
from https://stackoverflow.com/questions/4078902/cracking-short-rsa-keys
I also made Alpertons ECM SIQs engine work in python if you want factorization at that (over 60 digits level): https://github.com/oppressionslayer/primalitytest

Fastest way to find prime in intervals

I tried searching StackOverflow and some other sources to find the fastest way to get a prime number within some interval but I didn't find any efficient way, so here is my code:
def prime(lower,upper):
prime_num = []
for num in range(lower, upper + 1):
# all prime numbers are greater than 1
if num > 1:
for i in range(2, num):
if (num % i) == 0:
break
else:
prime_num.append(num)
return prime_num
Can I make this more efficient?
I tried finding my answer in Fastest way to find prime number but I didn't find prime numbers in intervals.
I wrote an equation based prime finder using MillerRabin, it's not as fast as a next_prime finder that sieves, but it can create large primes and you get the equation it used to do it. Here is an example. Following that is the code:
In [5]: random_powers_of_2_prime_finder(1700)
Out[5]: 'pow_mod_p2(27667926810353357467837030512965232809390030031226210665153053230366733641224969190749433786036367429621811172950201894317760707656743515868441833458231399831181835090133016121983538940390210139495308488162621251038899539040754356082290519897317296011451440743372490592978807226034368488897495284627000283052473128881567140583900869955672587100845212926471955871127908735971483320243645947895142869961737653915035227117609878654364103786076604155505752302208115738401922695154233285466309546195881192879100630465, 2**1700-1, 2**1700) = 39813813626508820802866840332930483915032503127272745949035409006826553224524022617054655998698265075307606470641844262425466307284799062400415723706121978318083341480570093257346685775812379517688088750320304825524129104843315625728552273405257012724890746036676690819264523213918417013254746343166475026521678315406258681897811019418959153156539529686266438553210337341886173951710073382062000738529177807356144889399957163774682298839265163964939160419147731528735814055956971057054406988006642001090729179713'
or use to get the answer directly:
In [6]: random_powers_of_2_prime_finder(1700, withstats=False)
Out[6]: 4294700745548823167814331026002277003506280507463037204789057278997393231742311262730598677178338843033513290622514923311878829768955491790776416394211091580729947152858233850115018443160652214481910152534141980349815095067950295723412327595876094583434338271661005996561619688026571936782640346943257209115949079332605276629723961466102207851395372367417030036395877110498443231648303290010952093560918409759519145163112934517372716658602133001390012193450373443470282242835941058763834226551786349290424923951
The code:
import random
import math
def primes_sieve2(limit):
a = [True] * limit
a[0] = a[1] = False
for (i, isprime) in enumerate(a):
if isprime:
yield i
for n in range(i*i, limit, i):
a[n] = False
def ltrailing(N):
return len(str(bin(N))) - len(str(bin(N)).rstrip('0'))
def pow_mod_p2(x, y, z):
"4-5 times faster than pow for powers of 2"
number = 1
while y:
if y & 1:
number = modular_powerxz(number * x, z)
y >>= 1
x = modular_powerxz(x * x, z)
return number
def modular_powerxz(num, z, bitlength=1, offset=0):
xpowers = 1<<(z.bit_length()-bitlength)
if ((num+1) & (xpowers-1)) == 0:
return ( num & ( xpowers -bitlength)) + 2
elif offset == -1:
return ( num & ( xpowers -bitlength)) + 1
elif offset == 0:
return ( num & ( xpowers -bitlength))
elif offset == 1:
return ( num & ( xpowers -bitlength)) - 1
elif offset == 2:
return ( num & ( xpowers -bitlength)) - 2
def MillerRabin(N, primetest, iterx, powx, withstats=False):
primetest = pow(primetest, powx, N)
if withstats == True:
print("first: ",primetest)
if primetest == 1 or primetest == N - 1:
return True
else:
for x in range(0, iterx-1):
primetest = pow(primetest, 2, N)
if withstats == True:
print("else: ", primetest)
if primetest == N - 1: return True
if primetest == 1: return False
return False
PRIMES=list(primes_sieve2(1000000))
def mr_isprime(N, withstats=False):
if N == 2:
return True
if N % 2 == 0:
return False
if N < 2:
return False
if N in PRIMES:
return True
for xx in PRIMES:
if N % xx == 0:
return False
iterx = ltrailing(N - 1)
k = pow_mod_p2(N, (1<<N.bit_length())-1, 1<<N.bit_length()) - 1
t = N >> iterx
tests = [k+1, k+2, k, k-2, k-1]
for primetest in tests:
if primetest >= N:
primetest %= N
if primetest >= 2:
if MillerRabin(N, primetest, iterx, t, withstats) == False:
return False
return True
def lars_last_modulus_powers_of_two(hm):
return math.gcd(hm, 1<<hm.bit_length())
def random_powers_of_2_prime_finder(powersnumber, primeanswer=False, withstats=True):
while True:
randnum = random.randrange((1<<(powersnumber-1))-1, (1<<powersnumber)-1,2)
while lars_last_modulus_powers_of_two(randnum) == 2 and mr_isprime(randnum//2) == False:
randnum = random.randrange((1<<(powersnumber-1))-1, (1<<powersnumber)-1,2)
answer = randnum//2
# This option makes the finding of a prime much longer, i would suggest not using it as
# the whole point is a prime answer.
if primeanswer == True:
if mr_isprime(answer) == False:
continue
powers2find = pow_mod_p2(answer, (1<<powersnumber)-1, 1<<powersnumber)
if mr_isprime(powers2find) == True:
break
else:
continue
if withstats == False:
return powers2find
elif withstats == True:
return f"pow_mod_p2({answer}, 2**{powersnumber}-1, 2**{powersnumber}) = {powers2find}"
return powers2find
def nextprime(N):
N+=2
while not mr_isprime(N):
N+=2
return N
def get_primes(lower, upper):
lower = lower|1
upper = upper|1
vv = []
if mr_isprime(lower):
vv.append(lower)
else:
vv=[nextprime(lower)]
while vv[-1] < upper:
vv.append(nextprime(vv[-1]))
return vv
Here is an example like yours:
In [1538]: cc = get_primes(1009732533765201, 1009732533767201)
In [1539]: print(cc)
[1009732533765251, 1009732533765281, 1009732533765289, 1009732533765301, 1009732533765341, 1009732533765379, 1009732533765481, 1009732533765493, 1009732533765509, 1009732533765521, 1009732533765539, 1009732533765547, 1009732533765559, 1009732533765589, 1009732533765623, 1009732533765749, 1009732533765751, 1009732533765757, 1009732533765773, 1009732533765821, 1009732533765859, 1009732533765889, 1009732533765899, 1009732533765929, 1009732533765947, 1009732533766063, 1009732533766069, 1009732533766079, 1009732533766093, 1009732533766109, 1009732533766189, 1009732533766211, 1009732533766249, 1009732533766283, 1009732533766337, 1009732533766343, 1009732533766421, 1009732533766427, 1009732533766457, 1009732533766531, 1009732533766631, 1009732533766643, 1009732533766667, 1009732533766703, 1009732533766727, 1009732533766751, 1009732533766763, 1009732533766807, 1009732533766811, 1009732533766829, 1009732533766843, 1009732533766877, 1009732533766909, 1009732533766933, 1009732533766937, 1009732533766973, 1009732533767029, 1009732533767039, 1009732533767093, 1009732533767101, 1009732533767147, 1009732533767159, 1009732533767161, 1009732533767183, 1009732533767197, 1009732533767233]
Yes. In general, use:
Sieve of Eratosthenes
Miller-Rabin Primality Test
Other options include trying a compiled language, like C++, but I think that isn't what you're looking for, since you've asked about Python.
Yes, you can make it more efficient. As has been mentioned, for very large numbers use Miller-Rabin. For smaller ranges use the Sieve of Eratosthenes. However, apart from that, your prime checker code is very inefficient.
2 is the only even prime number, which can save you doing half the work you do.
You only need to check up to the square root of the number you are testing. In any pair of factors: f and n/f, one is guaranteed to be less then or equal to the square root of the number being tested. Once you find a factor then the number is composite.
My Python is not good, so this is in pseudocode:
isPrime(num)
// Negatives, 0, 1 are not prime.
if (num < 2) return false
// Even numbers: 2 is the only even prime.
if (num % 2 == 0) return (num == 2)
// Odd numbers have only odd factors.
limit <- 1 + sqrt(num)
for (i <- 3 to limit step 2)
if (num % i == 0) return false
// No factors found so num is prime
return true
end isPrime

SPOJ Prime Generator

I guess this isn't the best question in the world, but I can't seem to figure why on earth this code:
def isprime(num):
if num < 2:
return False
if num == 2:
return True
if num % 2 == 0:
return False
for divisor in range(3, int(num ** 0.5) + 1, 2):
if num % divisor == 0:
return False
return True
def case(mini, maxi):
for i in range(mini, maxi + 1):
if isprime(i):
print(i)
test = [line.split() for line in input().split("\n")[1:]]
for line in test:
mini, maxi = [int(num) for num in line]
case(mini, maxi)
print()
does not satisfy SPOJ Question 2?? The prime tester has worked well for me before, and the code works on the example inputs.

Categories

Resources