Draw a contour on the leaf to calculate the area using OpenCV - python

I am trying to draw a contour on the leaf to calculate the area of the leaf using OpenCV but cv2.findContours() does not draw a contour around the leaf but the other regions.
My Code
def Contours_Detection(image_path):
img = cv2.imread(image_path)
image = cv2.resize(img,(500,500), interpolation = cv2.INTER_AREA)
lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
# store the a-channel
a_channel = lab[:,:,1]
# Automate threshold using Otsu method
th = cv2.threshold(a_channel,127,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)[1]
# Mask the result with the original image
masked = cv2.bitwise_and(image, image, mask = th)
blur = cv2.medianBlur(masked, 7)
gray = cv2.cvtColor(blur, cv2.COLOR_BGR2GRAY)
binary = cv2.threshold(gray,125, 255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3))
MORPH_close = cv2.morphologyEx(binary, cv2.MORPH_CLOSE, kernel, iterations=2)
result = 255 - MORPH_close
contours, hierarchy = cv2.findContours(result, mode=cv2.RETR_LIST, method=cv2.CHAIN_APPROX_NONE)
Num_of_contour = len(contours)
image_copy = image.copy()
spot_on_org_img = cv2.drawContours(image_copy, contours, -1, (0, 255, 0), thickness=2)
black_img = np.zeros(image.shape)
# draw the contours on the black image
spot_on_black_img = cv2.drawContours(black_img, contours, -1, (0,255,0), 1)
return spot_on_black_img
image_path = '/content/IMG_3407.jpg'
spot_on_black_img = Contours_Detection(image_path)
cv2_imshow(spot_on_black_img)
Input Image
Output Image

Related

How to remove bell curved shape from image using opencv

I hope you are doing well. I want to remove the bell-curved shape in the image. I have used OpenCV. I have implemented the following code which detects the curve shape, Now How can remove that curve shape and save the new image in the folder.
Input Image 1
I want to remove the area shown in the image below
Area i want to remove
import cv2
import numpy as np
# load image as grayscale
cell1 = cv2.imread("/content/savedImage.jpg",0)
# threshold image
ret,thresh_binary = cv2.threshold(cell1,107,255,cv2.THRESH_BINARY)
# findcontours
contours, hierarchy = cv2.findContours(image =thresh_binary , mode = cv2.RETR_TREE,method = cv2.CHAIN_APPROX_SIMPLE)
# create an empty mask
mask = np.zeros(cell1.shape[:2],dtype=np.uint8)
# loop through the contours
for i,cnt in enumerate(contours):
# if the contour has no other contours inside of it
if hierarchy[0][i][2] == -1 :
# if the size of the contour is greater than a threshold
if cv2.contourArea(cnt) > 10000:
cv2.drawContours(mask,[cnt], 0, (255), -1)
fig, ax = plt.subplots(1,2)
ax[0].imshow(cell1,'gray');
ax[1].imshow(mask,'gray');
Ouput Image after the above Code
How can I process to remove that curve shape?
Here is one way to do that in Python/OpenCV.
Get the external contours. Then find the one that has the largest w/h aspect ratio. Draw that contour filled on a black background as a mask. Dilate it a little. Then invert it and use it to blacken out that region.
Input:
import cv2
import numpy as np
# read image
img = cv2.imread('the_image.jpg')
ht, wd = img.shape[:2]
# convert to grayscale
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# threshold
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)[1]
# get external contours
contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
max_aspect=0
for cntr in contours:
x,y,w,h = cv2.boundingRect(cntr)
aspect = w/h
if aspect > max_aspect:
max_aspect = aspect
max_contour = cntr
# create mask from max_contour
mask = np.zeros((ht,wd), dtype=np.uint8)
mask = cv2.drawContours(mask, [max_contour], 0, (255), -1)
# dilate mask
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3))
mask = cv2.morphologyEx(mask, cv2.MORPH_DILATE, kernel)
# invert mask
mask = 255 - mask
# mask out region in input
result = img.copy()
result = cv2.bitwise_and(result, result, mask=mask)
# save resulting image
cv2.imwrite('the_image_masked.png',result)
# show thresh and result
cv2.imshow("mask", mask)
cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()
Result:

Remove the background from a picture using python

I am trying to remove the backgrounds of a set of tea leaf images.
I tried these codes in StackOverflow itself but they don't work with my images.
How to remove the background from a picture in OpenCV python
how to remove background of images in python
How can I delete the whole background around the leaf and keep only the single leaf.
This is a one-sample of the image set.
# Read image
img = cv2.imread('leaf.jpg')
# Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Find edges
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY)[1]
# Find contour
contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
# Sort contour by area
contours = sorted(contours, key=cv2.contourArea, reverse=True)
# Find the bounding box and crop image to get ROI
for cnt in contours:
x,y,w,h = cv2.boundingRect(cnt)
ROI = img[y:y+h, x:x+w]
break
# Define lower and upper threshold for background
lower = np.array([128, 128, 128])
upper = np.array([255, 255, 255])
# Create mask to only select black
thresh = cv2.inRange(ROI, lower, upper)
# Apply morphology
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3))
morph = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
# invert morph image to get background as black
mask = 255 - morph
# apply mask to image
result = cv2.bitwise_and(ROI, ROI, mask=mask)
plt.imshow(result)

Removing background color from image opencv python

I have many images of specimen which have uncontrollable background color. Some of them have black background. Some of them have white background. Some of them have green background, etc.
I would like to remove these background color of a given image where the object in the image is just only one specimen. I try this code but it does not work as i expect.
def get_holes(image, thresh):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
im_bw = cv2.threshold(gray, thresh, 255, cv2.THRESH_BINARY)[1]
im_bw_inv = cv2.bitwise_not(im_bw)
_, contour, _ = cv2.findContours(im_bw_inv, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contour:
cv2.drawContours(im_bw_inv, [cnt], 0, 255, -1)
nt = cv2.bitwise_not(im_bw)
im_bw_inv = cv2.bitwise_or(im_bw_inv, nt)
return im_bw_inv
def remove_background(image, thresh, scale_factor=.25, kernel_range=range(1, 15), border=None):
border = border or kernel_range[-1]
holes = get_holes(image, thresh)
small = cv2.resize(holes, None, fx=scale_factor, fy=scale_factor)
bordered = cv2.copyMakeBorder(small, border, border, border, border, cv2.BORDER_CONSTANT)
for i in kernel_range:
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2*i+1, 2*i+1))
bordered = cv2.morphologyEx(bordered, cv2.MORPH_CLOSE, kernel)
unbordered = bordered[border: -border, border: -border]
mask = cv2.resize(unbordered, (image.shape[1], image.shape[0]))
fg = cv2.bitwise_and(image, image, mask=mask)
return fg
file = your_file_location
img = cv2.imread(file)
nb_img = dm.remove_background(img, 255)
These are some example images
May i have your suggestions?
Here's a simple approach with the assumption that there is only one specimen per image.
Kmeans color quantization. We load the image then perform Kmeans color quantization to segment the image into a specified cluster of colors. For instance with clusters=4, the image will be labeled into four colors.
Obtain binary image. Convert to grayscale, Gaussian blur, adaptive threshold.
Draw largest enclosing circle onto mask. Find contours, sort for largest contour using contour area filtering then draw the largest enclosing circle onto a mask using cv2.minEnclosingCircle.
Bitwise-and. Since we have isolated the desired sections to extract, we simply bitwise-and the mask and input image
Input image -> Kmeans -> Binary image
Detected largest enclosing circle -> Mask -> Result
Here's the output for the second image
Input image -> Kmeans -> Binary image
Detected largest enclosing circle -> Mask -> Result
Code
import cv2
import numpy as np
# Kmeans color segmentation
def kmeans_color_quantization(image, clusters=8, rounds=1):
h, w = image.shape[:2]
samples = np.zeros([h*w,3], dtype=np.float32)
count = 0
for x in range(h):
for y in range(w):
samples[count] = image[x][y]
count += 1
compactness, labels, centers = cv2.kmeans(samples,
clusters,
None,
(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10000, 0.0001),
rounds,
cv2.KMEANS_RANDOM_CENTERS)
centers = np.uint8(centers)
res = centers[labels.flatten()]
return res.reshape((image.shape))
# Load image and perform kmeans
image = cv2.imread('2.jpg')
original = image.copy()
kmeans = kmeans_color_quantization(image, clusters=4)
# Convert to grayscale, Gaussian blur, adaptive threshold
gray = cv2.cvtColor(kmeans, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (3,3), 0)
thresh = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV,21,2)
# Draw largest enclosing circle onto a mask
mask = np.zeros(original.shape[:2], dtype=np.uint8)
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
for c in cnts:
((x, y), r) = cv2.minEnclosingCircle(c)
cv2.circle(image, (int(x), int(y)), int(r), (36, 255, 12), 2)
cv2.circle(mask, (int(x), int(y)), int(r), 255, -1)
break
# Bitwise-and for result
result = cv2.bitwise_and(original, original, mask=mask)
result[mask==0] = (255,255,255)
cv2.imshow('thresh', thresh)
cv2.imshow('result', result)
cv2.imshow('mask', mask)
cv2.imshow('kmeans', kmeans)
cv2.imshow('image', image)
cv2.waitKey()

How to extract multiple objects from an image using Python OpenCV?

I am trying to extract object from an image using the color using OpenCV, I have tried by inverse thresholding and grayscale combined with cv2.findContours() but I am unable to use it recursively. Furthermore I can't figure out how to "cut out" the match from the original image and save it to a single file.
EDIT
~
import cv2
import numpy as np
# load the images
empty = cv2.imread("empty.jpg")
full = cv2.imread("test.jpg")
# save color copy for visualization
full_c = full.copy()
# convert to grayscale
empty_g = cv2.cvtColor(empty, cv2.COLOR_BGR2GRAY)
full_g = cv2.cvtColor(full, cv2.COLOR_BGR2GRAY)
empty_g = cv2.GaussianBlur(empty_g, (51, 51), 0)
full_g = cv2.GaussianBlur(full_g, (51, 51), 0)
diff = full_g - empty_g
# thresholding
diff_th =
cv2.adaptiveThreshold(full_g,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY,11,2)
# combine the difference image and the inverse threshold
zone = cv2.bitwise_and(diff, diff_th, None)
# threshold to get the mask instead of gray pixels
_, zone = cv2.threshold(bag, 100, 255, 0)
# dilate to account for the blurring in the beginning
kernel = np.ones((15, 15), np.uint8)
bag = cv2.dilate(bag, kernel, iterations=1)
# find contours, sort and draw the biggest one
contours, _ = cv2.findContours(bag, cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
contours = sorted(contours, key=cv2.contourArea, reverse=True)[:3]
i = 0
while i < len(contours):
x, y, width, height = cv2.boundingRect(contours[i])
roi = full_c[y:y+height, x:x+width]
cv2.imwrite("piece"+str(i)+".png", roi)
i += 1
Where empty is just a white image size 1500 * 1000 as the one above and test is the one above.
This is what I came up with, only downside, I have a third image instead of only the 2 expected showing a shadow zone now...
Here's a simple approach:
Obtain binary image. Load the image, grayscale, Gaussian blur, Otsu's threshold, then dilate to obtain a binary black/white image.
Extract ROI. Find contours, obtain bounding boxes, extract ROI using Numpy slicing, and save each ROI
Binary image (Otsu's thresholding + dilation)
Detected ROIs highlighted in green
To extract each ROI, you can find the bounding box coordinates using cv2.boundingRect(), crop the desired region, then save the image
x,y,w,h = cv2.boundingRect(c)
ROI = original[y:y+h, x:x+w]
First object
Second object
import cv2
# Load image, grayscale, Gaussian blur, Otsu's threshold, dilate
image = cv2.imread('1.jpg')
original = image.copy()
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5,5), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7,7))
dilate = cv2.dilate(thresh, kernel, iterations=1)
# Find contours, obtain bounding box coordinates, and extract ROI
cnts = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
image_number = 0
for c in cnts:
x,y,w,h = cv2.boundingRect(c)
cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 2)
ROI = original[y:y+h, x:x+w]
cv2.imwrite("ROI_{}.png".format(image_number), ROI)
image_number += 1
cv2.imshow('image', image)
cv2.imshow('thresh', thresh)
cv2.imshow('dilate', dilate)
cv2.waitKey()

Scale contours up/grow outward

I have a small script (GitHub) (based on this answer) to detect objects on a white background. The script is working fine and detects the objects. For example, this image:
becomes this:
and I crop the boundingRect (red one).
I'll be doing further operations on this image. For example instead of a rectangle crop, I will be cropping just the contour. (Anyway, these are further problems to be faced.)
What I want to do, now, is scale up/grow the contour (green one). I'm not sure if scale and grow means the same thing in this context, because when I think of scale, there's usually a single point of origin/anchor point. With grow, it's relative to the edges. I want to have something like this (created in Photoshop):
So after I detect the object/find contours, I want to grow it by some value/ratio, so that I have some space/pixels to modify which won't affect the object. How can I do that?
Mentioned script:
# drop an image on this script file
img_path = Path(sys.argv[1])
# open image with Pillow and convert it to RGB if the image is CMYK
img = Image.open(str(img_path))
if img.mode == "CMYK":
img = ImageCms.profileToProfile(img, "Color Profiles\\USWebCoatedSWOP.icc", "Color Profiles\\sRGB_Color_Space_Profile.icm", outputMode="RGB")
img = cv2.cvtColor(numpy.array(img), cv2.COLOR_RGB2BGR)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
threshed = cv2.threshold(gray, 240, 255, cv2.THRESH_BINARY_INV)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (11,11))
morphed = cv2.morphologyEx(threshed, cv2.MORPH_CLOSE, kernel)
contours = cv2.findContours(morphed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
contour = sorted(contours, key=cv2.contourArea)[-1]
x, y, w, h = cv2.boundingRect(contour)
final = cv2.drawContours(img, contours, -1, (0,255,0), 2)
cv2.rectangle(final, (x,y), (x+w,y+h), (0,0,255), 2)
cv2.imshow("final", final)
cv2.waitKey(0)
cv2.destroyAllWindows()
Images posted here are scaled down to keep the question short. Original images and the script(s) can be found on the mentioned (first paragraph) GitHub page.
Thanks to HansHirse's suggestion (using morphological dilation), I've managed to make it work.
img_path = Path(sys.argv[1])
def cmyk_to_rgb(cmyk_img):
img = Image.open(cmyk_img)
if img.mode == "CMYK":
img = ImageCms.profileToProfile(img, "Color Profiles\\USWebCoatedSWOP.icc", "Color Profiles\\sRGB_Color_Space_Profile.icm", outputMode="RGB")
return cv2.cvtColor(numpy.array(img), cv2.COLOR_RGB2BGR)
def cv_threshold(img, thresh=128, maxval=255, type=cv2.THRESH_BINARY):
if len(img.shape) == 3:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
threshed = cv2.threshold(img, thresh, maxval, type)[1]
return threshed
def find_contours(img, to_gray=None):
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (11,11))
morphed = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
contours = cv2.findContours(morphed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
return contours[-2]
def mask_from_contours(ref_img, contours):
mask = numpy.zeros(ref_img.shape, numpy.uint8)
mask = cv2.drawContours(mask, contours, -1, (255,255,255), -1)
return cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
def dilate_mask(mask, kernel_size=10):
kernel = numpy.ones((kernel_size,kernel_size), numpy.uint8)
dilated = cv2.dilate(mask, kernel, iterations=1)
return dilated
def draw_contours(src_img, contours):
canvas = cv2.drawContours(src_img.copy(), contours, -1, (0,255,0), 2)
x, y, w, h = cv2.boundingRect(contours[-1])
cv2.rectangle(canvas, (x,y), (x+w,y+h), (0,0,255), 2)
return canvas
orig_img = cmyk_to_rgb(str(img_path))
orig_threshed = cv_threshold(orig_img, 240, type=cv2.THRESH_BINARY_INV)
orig_contours = find_contours(orig_threshed)
orig_mask = mask_from_contours(orig_img, orig_contours)
orig_output = draw_contours(orig_img, orig_contours)
dilated_mask = dilate_mask(orig_mask, 50)
dilated_contours = find_contours(dilated_mask)
dilated_output = draw_contours(orig_img, dilated_contours)
cv2.imshow("orig_output", orig_output)
cv2.imshow("dilated_output", dilated_output)
cv2.waitKey(0)
cv2.destroyAllWindows()
I believe the code is self-explonatory enough. An example output:
Full script (again) can be found at show_dilated_contours.py
Update
As a bonus, later I wanted to smooth the contours. I've came across this blog post in which the author talks about how to smooth the edges of a shape (in Photoshop). The idea is really simple and can also be applied in OpenCV to smooth the contours. The steps are:
Create a mask from contours (or from the shape)
Blur the mask
Threshold the blurred mask (now, we have a smoother mask than the mask in step 1)
Find the contours again on the blurred + thresholded image. Since the mask/shape is smoother, we'll get smoother contours.
Example code and output:
# ... continuing previos code
# pass 1
smooth_mask_blurred = cv2.GaussianBlur(dilated_mask, (21,21), 0)
smooth_mask_threshed1 = cv_threshold(smooth_mask_blurred)
# pass 2
smooth_mask_blurred = cv2.GaussianBlur(smooth_mask_threshed1, (21,21), 0)
smooth_mask_threshed2 = cv_threshold(smooth_mask_blurred)
# find contours from smoothened mask
smooth_mask_contours = find_contours(smooth_mask_threshed2)
# draw the contours on the original image
smooth_mask_output = draw_contours(orig_img, smooth_mask_contours)
cv2.imshow("dilated_output", dilated_output)
cv2.imshow("smooth_mask_output", smooth_mask_output)
Full code at show_smooth_contours.py.

Categories

Resources