path traced is not centered in maze solver python - python

i have no knowledge of python but i have generated this code using chat-gpt for solving the maze but the path it is tracing is not centered but running along the edges of the path which is somewhat not presentable as a solution here is the code-:
import numpy as np
import os, sys
# Load the maze image
maze = cv2.imread("ml.png")
# Convert the image to grayscale
gray = cv2.cvtColor(maze, cv2.COLOR_BGR2GRAY)
# Threshold the grayscale image to create a binary image
_, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
# Find the starting and ending points
start = None
end = None
for i in range(thresh.shape[0]-1, -1, -1):
if 255 in thresh[i]:
start = (i, np.where(thresh[i] == 255)[0][0])
break
for i in range(thresh.shape[0]):
if 255 in thresh[i]:
end = (i, np.where(thresh[i] == 255)[0][-1])
break
# Define the movements in the up, right, down, left order
movements = [(0, -1), (1, 0), (0, 1), (-1, 0)]
# Create a function to check if a position is inside the maze
def in_maze(y, x, h, w):
return 0 <= y < h and 0 <= x < w
# Create a function to solve the maze using breadth-first search
def solve_maze(maze, start, end):
h, w = maze.shape[:2]
dist = np.zeros((h, w), np.int32)
parent = np.zeros((h, w, 2), np.int32)
q = [start]
for i, j in q:
for dy, dx in movements:
y, x = i + dy, j + dx
if in_maze(y, x, h, w) and maze[y, x] == 255 and dist[y, x] == 0:
dist[y, x] = dist[i, j] + 1
parent[y, x] = (i, j)
q.append((y, x))
if (y, x) == end:
return dist, parent
return dist, parent
# Solve the maze and find the distance to each cell and the parent of each cell
dist, parent = solve_maze(thresh, start, end)
# Draw the solution path on the original maze image
p = end
while p != start:
y, x = p
start_point = (int(x-16), int(5+y))
end_point = (int(parent[y, x][1]), int(parent[y, x][0]))
cv2.line(maze, start_point, end_point, (0, 0, 255), )
p = tuple(parent[y, x])
def createImage(maze):
"""Save the image in the same directory as the python script under a given name"""
image = maze
name = input(
'\nEnter a name to save the image under\nIt will be stored in the same directory as this python script\n>>> ')
result = cv2.imwrite(f'{os.path.dirname(sys.argv[0])}/{name}solved.png', image)
print(f'Status: {"Image successfully created!" if result else "Something went wrong"}')
# Display the solved maze
cv2.imshow("Solved Maze", maze)
cv2.waitKey(0)
cv2.destroyAllWindows()
createImage(maze)
it taking png type of a maze nd solving on its own but the solution is not centered how can i center the red solution line?? and kindly give the whole code or atleast whole part as i dont have knowledge of any python library or algorithm used to solve the maze. here is the path it is tracing right now-:
to center the the path and increase its thickness

Related

How to rotate an image to get not-null pixels?

In the image I linked below, I need to get all the yellow/green pixels in this rotated rectangle and get rid of the blue background, so that the rectangle's axis are aligned with the x and y axis.
I'm using numpy but don't have a clue what I should do.
I uploaded the array in this drive in case anyone would like to work with the actual array
Thanks for the help in advance.
I used the same image as user2640045, but different approach.
import numpy as np
import cv2
# load and convert image to grayscale
img = cv2.imread('image.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# binarize image
threshold, binarized_img = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# find the largest contour
contours, hierarchy = cv2.findContours(binarized_img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
c = max(contours, key = cv2.contourArea)
# get size of the rotated rectangle
center, size, angle = cv2.minAreaRect(c)
# get size of the image
h, w, *_ = img.shape
# create a rotation matrix and rotate the image
M = cv2.getRotationMatrix2D(center, angle, 1.0)
rotated_img = cv2.warpAffine(img, M, (w, h))
# crop the image
pad_x = int((w - size[0]) / 2)
pad_y = int((h - size[1]) / 2)
cropped_img = rotated_img[pad_y : pad_y + int(size[1]), pad_x : pad_x + int(size[0]), :]
Result:
I realize there is a allow_pickle=False option in numpys load method but I didn't feel comfortable with unpickling/using data from the internet so I used the small image. After removing the coordinate system and stuff I had
I define two helper methods. One to later rotate the image taken from an other stack overflow thread. See link below. And one to get a mask being one at a specified color and zero otherwise.
import numpy as np
import matplotlib.pyplot as plt
import sympy
import cv2
import functools
color = arr[150,50]
def similar_to_boundary_color(arr, color=tuple(color)):
mask = functools.reduce(np.logical_and, [np.isclose(arr[:,:,i], color[i]) for i in range(4)])
return mask
#https://stackoverflow.com/a/9042907/2640045
def rotate_image(image, angle):
image_center = tuple(np.array(image.shape[1::-1]) / 2)
rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)
result = cv2.warpAffine(image, rot_mat, image.shape[1::-1], flags=cv2.INTER_LINEAR)
return result
Next I calculate the angle to rotate about. I do that by finding the lowest pixel at width 50 and 300. I picked those since they are far enough from the boundary to not be effected by missing corners etc..
i,j = np.where(~similar_to_boundary_color(arr))
slope = (max(i[j == 50])-max(i[j == 300]))/(50-300)
angle = np.arctan(slope)
arr = rotate_image(arr, np.rad2deg(angle))
plt.imshow(arr)
.
One way of doing the cropping is the following. You calculate the mid in height and width. Then you take two slices around the mid say 20 pixels in one direction and to until the mid in the other one. The biggest/smallest index where the pixel is white/background colored is a reasonable point to cut.
i,j = np.where(~(~similar_to_boundary_color(arr) & ~similar_to_boundary_color(arr, (0,0,0,0))))
imid, jmid = np.array(arr.shape)[:2]/2
imin = max(i[(i < imid) & (jmid - 10 < j) & (j < jmid + 10)])
imax = min(i[(i > imid) & (jmid - 10 < j) & (j < jmid + 10)])
jmax = min(j[(j > jmid) & (imid - 10 < i) & (i < imid + 10)])
jmin = max(j[(j < jmid) & (imid - 10 < i) & (i < imid + 10)])
arr = arr[imin:imax,jmin:jmax]
plt.imshow(arr)
and the result is:

Python OpenCV append matches' center x, y coordinates in tuples

I have this simple opencv template matching function written in Python.
image:
template:
def find(object, sensitivity):
screen = "tool.png"
screen_read = cv2.imread(screen)
screen_gray = cv2.cvtColor(screen_read, cv2.COLOR_BGR2GRAY)
obj = cv2.imread(object, cv2.IMREAD_GRAYSCALE)
w, h = obj.shape[::-1]
location = np.where(cv2.matchTemplate(screen_gray, obj, cv2.TM_CCORR_NORMED) >= sensitivity)
positions = []
for xy in zip(*location[::-1]):
cv2.rectangle(screen_read, xy, (xy[0] + w, xy[1] + h), (0, 0, 255), 1)
x = random(xy[0], (xy[0] + w) - 2)
y = random(xy[1], (xy[1] + h) - 2)
print(x, y)
positions.append(str(x) + ", " + str(y))
#cv2.imshow("Test", screen_read)
#cv2.waitKey(0)
find("enemylogo.png", 0.90)
It will find all the templates correctly, as shown here:
However, my goal here is to pass the center coordinate to be used in loop, outside the function. For this, I need to store the x, y coordinates in an array (positions), as tuples.
However, I'm not getting desired results, it's adding too many tuples instead of only 2.
What I'm trying to do is:
for x in find("enemylogo.png", 0.90):
click(x) #x would be the coordinate of every template matched.
Could someone help me, please?
The line location = np.where.... will give you a lot of matches, and many of them will be right next to each other. Another technique is to recursively use minMaxLoc. This function will only give you the best result. But if you overwrite the best match with zeros on the first pass through, the second pass will find another match.
import cv2
import numpy as np
def find_templates(obj, sensitivity):
image = cv2.imread('tool.png', cv2.IMREAD_COLOR )
template = cv2.imread(obj, cv2.IMREAD_COLOR)
h, w = template.shape[:2]
print('h', h, 'w', w)
method = cv2.TM_CCORR_NORMED
threshold = 0.90
res = cv2.matchTemplate(image, template, method)
res_h, res_w = res.shape[:2]
# fake out max_val for first run through loop
max_val = 1
centers = []
while max_val > sensitivity:
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
if max_val > sensitivity:
centers.append( (max_loc[0] + w//2, max_loc[1] + h//2) )
x1 = max(max_loc[0] - w//2, 0)
y1 = max(max_loc[1] - h//2, 0)
x2 = min(max_loc[0] + w//2, res_w)
y2 = min(max_loc[1] + h//2, res_h)
res[y1:y2, x1:x2] = 0
image = cv2.rectangle(image,(max_loc[0],max_loc[1]), (max_loc[0]+w+1, max_loc[1]+h+1), (0,255,0) )
print(centers)
cv2.imwrite('output.png', image)
find_templates("enemy_logo.png", 0.90)
which gives
[(52, 52), (169, 52)]

Extracting data from tables without any grid lines and border from scanned image of document

Extracting table data from digital PDFs have been simple using camelot and tabula. However, the solution doesn't work with scanned images of the document pages specifically when the table doesn't have borders and inner grids. I have been trying to generate vertical and horizontal lines using OpenCV. However, since the scanned images will have slight rotation angles, it is difficult to proceed with the approach.
How can we utilize OpenCV to generate grids (horizontal and vertical lines) and borders for the scanned document page which contains table data (along with paragraphs of text)? If this is feasible, how to nullify the rotation angle of the scanned image?
I wrote some code to estimate the horizontal lines from the printed letters in the page. The same could be done for vertical ones I guess. The code below follows some general assumptions, here
some basic steps in pseudo code style:
prepare picture for contour detection
do contour detection
we assume most contours are letters
calc mean width of all contours
calc mean area of contours
filter all contours with two conditions:
a) contour (letter) heigths < meanHigh * 2
b) contour area > 4/5 meanArea
calc center point of all remaining contours
assume we have line regions (bins)
list all center point which are inside the region
do linear regression of region points
save slope and intercept
calc mean slope and intercept
here the full code:
import cv2
import numpy as np
from scipy import stats
def resizeImageByPercentage(img,scalePercent = 60):
width = int(img.shape[1] * scalePercent / 100)
height = int(img.shape[0] * scalePercent / 100)
dim = (width, height)
# resize image
return cv2.resize(img, dim, interpolation = cv2.INTER_AREA)
def calcAverageContourWithAndHeigh(contourList):
hs = list()
ws = list()
for cnt in contourList:
(x, y, w, h) = cv2.boundingRect(cnt)
ws.append(w)
hs.append(h)
return np.mean(ws),np.mean(hs)
def calcAverageContourArea(contourList):
areaList = list()
for cnt in contourList:
a = cv2.minAreaRect(cnt)
areaList.append(a[2])
return np.mean(areaList)
def calcCentroid(contour):
houghMoments = cv2.moments(contour)
# calculate x,y coordinate of centroid
if houghMoments["m00"] != 0: #case no contour could be calculated
cX = int(houghMoments["m10"] / houghMoments["m00"])
cY = int(houghMoments["m01"] / houghMoments["m00"])
else:
# set values as what you need in the situation
cX, cY = -1, -1
return cX,cY
def getCentroidWhenSizeInRange(contourList,letterSizeWidth,letterSizeHigh,deltaOffset,minLetterArea=10.0):
centroidList=list()
for cnt in contourList:
(x, y, w, h) = cv2.boundingRect(cnt)
area = cv2.minAreaRect(cnt)
#calc diff
diffW = abs(w-letterSizeWidth)
diffH = abs(h-letterSizeHigh)
#thresold A: almost smaller than mean letter size +- offset
#when almost letterSize
if diffW < deltaOffset and diffH < deltaOffset:
#threshold B > min area
if area[2] > minLetterArea:
cX,cY = calcCentroid(cnt)
if cX!=-1 and cY!=-1:
centroidList.append((cX,cY))
return centroidList
DEBUGMODE = True
#read image, do git clone https://github.com/WZBSocialScienceCenter/pdftabextract.git for the example
img = cv2.imread('pdftabextract/examples/catalogue_30s/data/ALA1934_RR-excerpt.pdf-2_1.png')
#get some basic infos
imgHeigh, imgWidth, imgChannelAmount = img.shape
if DEBUGMODE:
cv2.imwrite("img00original.jpg",resizeImageByPercentage(img,30))
cv2.imshow("original",img)
# prepare img
imgGrey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# apply Gaussian filter
imgGaussianBlur = cv2.GaussianBlur(imgGrey,(5,5),0)
#make binary img, black or white
_, imgBinThres = cv2.threshold(imgGaussianBlur, 130, 255, cv2.THRESH_BINARY)
## detect contours
contours, _ = cv2.findContours(imgBinThres, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
#we get some letter parameter
averageLetterWidth, averageLetterHigh = calcAverageContourWithAndHeigh(contours)
threshold1AllowedLetterSizeOffset = averageLetterHigh * 2 # double size
averageContourAreaSizeOfMinRect = calcAverageContourArea(contours)
threshHold2MinArea = 4 * averageContourAreaSizeOfMinRect / 5 # 4/5 * mean
print("mean letter Width: ", averageLetterWidth)
print("mean letter High: ", averageLetterHigh)
print("threshold 1 tolerance: ", threshold1AllowedLetterSizeOffset)
print("mean letter area ", averageContourAreaSizeOfMinRect)
print("thresold 2 min letter area ", threshHold2MinArea)
#we get all centroid of letter sizes contours, the other we ignore
centroidList = getCentroidWhenSizeInRange(contours,averageLetterWidth,averageLetterHigh,threshold1AllowedLetterSizeOffset,threshHold2MinArea)
if DEBUGMODE:
#debug print all centers:
imgFilteredCenter = img.copy()
for cX,cY in centroidList:
#draw in red color as BGR
cv2.circle(imgFilteredCenter, (cX, cY), 5, (0, 0, 255), -1)
cv2.imwrite("img01letterCenters.jpg",resizeImageByPercentage(imgFilteredCenter,30))
cv2.imshow("letterCenters",imgFilteredCenter)
#we estimate a bin widths
amountPixelFreeSpace = averageLetterHigh #TODO get better estimate out of histogram
estimatedBinWidth = round( averageLetterHigh + amountPixelFreeSpace) #TODO round better ?
binCollection = dict() #range(0,imgHeigh,estimatedBinWidth)
#we do seperate the center points into bins by y coordinate
for i in range(0,imgHeigh,estimatedBinWidth):
listCenterPointsInBin = list()
yMin = i
yMax = i + estimatedBinWidth
for cX,cY in centroidList:
if yMin < cY < yMax:#if fits in bin
listCenterPointsInBin.append((cX,cY))
binCollection[i] = listCenterPointsInBin
#we assume all point are in one line ?
#model = slope (x) + intercept
#model = m (x) + n
mList = list() #slope abs in img
nList = list() #intercept abs in img
nListRelative = list() #intercept relative to bin start
minAmountRegressionElements = 12 #is also alias for letter amount we expect
#we do regression for every point in the bin
for startYOfBin, values in binCollection.items():
#we reform values
xValues = [] #TODO use more short transform
yValues = []
for x,y in values:
xValues.append(x)
yValues.append(y)
#we assume a min limit of point in bin
if len(xValues) >= minAmountRegressionElements :
slope, intercept, r, p, std_err = stats.linregress(xValues, yValues)
mList.append(slope)
nList.append(intercept)
#we calc the relative intercept
nRelativeToBinStart = intercept - startYOfBin
nListRelative.append(nRelativeToBinStart)
if DEBUGMODE:
#we debug print all lines in one picute
imgLines = img.copy()
colorOfLine = (0, 255, 0) #green
for i in range(0,len(mList)):
slope = mList[i]
intercept = nList[i]
startPoint = (0, int( intercept)) #better round ?
endPointY = int( (slope * imgWidth + intercept) )
if endPointY < 0:
endPointY = 0
endPoint = (imgHeigh,endPointY)
cv2.line(imgLines, startPoint, endPoint, colorOfLine, 2)
cv2.imwrite("img02lines.jpg",resizeImageByPercentage(imgLines,30))
cv2.imshow("linesOfLetters ",imgLines)
#we assume in mean we got it right
meanIntercept = np.mean(nListRelative)
meanSlope = np.mean(mList)
print("meanIntercept :", meanIntercept)
print("meanSlope ", meanSlope)
#TODO calc angle with math.atan(slope) ...
if DEBUGMODE:
cv2.waitKey(0)
original:
center point of letters:
lines:
I had the same problem some time ago and this tutorial is the solution to that. It explains using pdftabextract which is a Python library by Markus Konrad and leverages OpenCV’s Hough transform to detect the lines and works even if the scanned document is a bit tilted. The tutorial walks your through parsing a 1920s German newspaper

How to join nearby bounding boxes in OpenCV Python

I am doing a college class project on image processing. This is my original image:
I want to join nearby/overlapping bounding boxes on individual text line images, but I don't know how. My code looks like this so far (thanks to #HansHirse for the help):
import os
import cv2
import numpy as np
from scipy import stats
image = cv2.imread('example.png')
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
ret,thresh = cv2.threshold(gray,127,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
#dilation
kernel = np.ones((5,5), np.uint8)
img_dilation = cv2.dilate(thresh, kernel, iterations=1)
#find contours
ctrs, hier = cv2.findContours(img_dilation.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# https://www.pyimagesearch.com/2015/04/20/sorting-contours-using-python-and-opencv/
def sort_contours(cnts, method="left-to-right"):
# initialize the reverse flag and sort index
reverse = False
i = 0
# handle if we need to sort in reverse
if method == "right-to-left" or method == "bottom-to-top":
reverse = True
# handle if we are sorting against the y-coordinate rather than
# the x-coordinate of the bounding box
if method == "top-to-bottom" or method == "bottom-to-top":
i = 1
# construct the list of bounding boxes and sort them from top to
# bottom
boundingBoxes = [cv2.boundingRect(c) for c in cnts]
(cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
key=lambda b: b[1][i], reverse=reverse))
# return the list of sorted contours and bounding boxes
return (cnts, boundingBoxes)
sortedctrs,sortedbbs=sort_contours(ctrs)
xyminmax=[]
for cnt in sortedctrs:
x, y, w, h = cv2.boundingRect(cnt)
xyminmax.append([x,y,x+w,y+h])
distances=[]
for i in range(len(xyminmax)):
try:
first_xmax = xyminmax[i][2]
second_xmin = xyminmax[i + 1][0]
distance=abs(second_xmin-first_xmax)
distances.append(distance)
except IndexError:
pass
THRESHOLD=stats.mode(distances, axis=None)[0][0]
new_rects=[]
for i in range(len(xyminmax)):
try:
# [xmin,ymin,xmax,ymax]
first_ymin=xyminmax[i][1]
first_ymax=xyminmax[i][3]
second_ymin=xyminmax[i+1][1]
second_ymax=xyminmax[i+1][3]
first_xmax = xyminmax[i][2]
second_xmin = xyminmax[i+1][0]
firstheight=abs(first_ymax-first_ymin)
secondheight=abs(second_ymax-second_ymin)
distance=abs(second_xmin-first_xmax)
if distance<THRESHOLD:
new_xmin=xyminmax[i][0]
new_xmax=xyminmax[i+1][2]
if first_ymin>second_ymin:
new_ymin=second_ymin
else:
new_ymin = first_ymin
if firstheight>secondheight:
new_ymax = first_ymax
else:
new_ymax = second_ymax
new_rects.append([new_xmin,new_ymin,new_xmax,new_ymax])
else:
new_rects.append(xyminmax[i])
except IndexError:
pass
for rect in new_rects:
cv2.rectangle(image, (rect[0], rect[1]), (rect[2], rect[3]), (121, 11, 189), 2)
cv2.imwrite("result.png",image)
which produces this image as a result:
I want to join very close or overlapping bounding boxes such as these
into a single bounding box so the formula doesn't get separated into single characters. I have tried using cv2.groupRectangles but the print results were just NULL.
So, here comes my solution. I partially modified your (initial) code to my preferred naming, etc. Also, I commented all the stuff, I added.
import cv2
import numpy as np
image = cv2.imread('images/example.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
kernel = np.ones((5, 5), np.uint8)
img_dilated = cv2.dilate(thresh, kernel, iterations = 1)
cnts, _ = cv2.findContours(img_dilated.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Array of initial bounding rects
rects = []
# Bool array indicating which initial bounding rect has
# already been used
rectsUsed = []
# Just initialize bounding rects and set all bools to false
for cnt in cnts:
rects.append(cv2.boundingRect(cnt))
rectsUsed.append(False)
# Sort bounding rects by x coordinate
def getXFromRect(item):
return item[0]
rects.sort(key = getXFromRect)
# Array of accepted rects
acceptedRects = []
# Merge threshold for x coordinate distance
xThr = 5
# Iterate all initial bounding rects
for supIdx, supVal in enumerate(rects):
if (rectsUsed[supIdx] == False):
# Initialize current rect
currxMin = supVal[0]
currxMax = supVal[0] + supVal[2]
curryMin = supVal[1]
curryMax = supVal[1] + supVal[3]
# This bounding rect is used
rectsUsed[supIdx] = True
# Iterate all initial bounding rects
# starting from the next
for subIdx, subVal in enumerate(rects[(supIdx+1):], start = (supIdx+1)):
# Initialize merge candidate
candxMin = subVal[0]
candxMax = subVal[0] + subVal[2]
candyMin = subVal[1]
candyMax = subVal[1] + subVal[3]
# Check if x distance between current rect
# and merge candidate is small enough
if (candxMin <= currxMax + xThr):
# Reset coordinates of current rect
currxMax = candxMax
curryMin = min(curryMin, candyMin)
curryMax = max(curryMax, candyMax)
# Merge candidate (bounding rect) is used
rectsUsed[subIdx] = True
else:
break
# No more merge candidates possible, accept current rect
acceptedRects.append([currxMin, curryMin, currxMax - currxMin, curryMax - curryMin])
for rect in acceptedRects:
img = cv2.rectangle(image, (rect[0], rect[1]), (rect[0] + rect[2], rect[1] + rect[3]), (121, 11, 189), 2)
cv2.imwrite("images/result.png", image)
For your example
I get the following output
Now, you have to find a proper threshold to meet your expectations. Maybe, there is even some more work to do, especially to get the whole formula, since the distances don't vary that much.
Disclaimer: I'm new to Python in general, and specially to the Python API of OpenCV (C++ for the win). Comments, improvements, highlighting Python no-gos are highly welcome!
Here is a slightly different approach, using the OpenCV Wrapper library.
import cv2
import opencv_wrapper as cvw
image = cv2.imread("example.png")
gray = cvw.bgr2gray(image)
thresh = cvw.threshold_otsu(gray, inverse=True)
# dilation
img_dilation = cvw.dilate(thresh, 5)
# Find contours
contours = cvw.find_external_contours(img_dilation)
# Map contours to bounding rectangles, using bounding_rect property
rects = map(lambda c: c.bounding_rect, contours)
# Sort rects by top-left x (rect.x == rect.tl.x)
sorted_rects = sorted(rects, key=lambda r: r.x)
# Distance threshold
dt = 5
# List of final, joined rectangles
final_rects = [sorted_rects[0]]
for rect in sorted_rects[1:]:
prev_rect = final_rects[-1]
# Shift rectangle `dt` back, to find out if they overlap
shifted_rect = cvw.Rect(rect.tl.x - dt, rect.tl.y, rect.width, rect.height)
intersection = cvw.rect_intersection(prev_rect, shifted_rect)
if intersection is not None:
# Join the two rectangles
min_y = min((prev_rect.tl.y, rect.tl.y))
max_y = max((prev_rect.bl.y, rect.bl.y))
max_x = max((prev_rect.br.x, rect.br.x))
width = max_x - prev_rect.tl.x
height = max_y - min_y
new_rect = cvw.Rect(prev_rect.tl.x, min_y, width, height)
# Add new rectangle to final list, making it the new prev_rect
# in the next iteration
final_rects[-1] = new_rect
else:
# If no intersection, add the box
final_rects.append(rect)
for rect in sorted_rects:
cvw.rectangle(image, rect, cvw.Color.MAGENTA, line_style=cvw.LineStyle.DASHED)
for rect in final_rects:
cvw.rectangle(image, rect, cvw.Color.GREEN, thickness=2)
cv2.imwrite("result.png", image)
And the result
The green boxes are the final result, while the magenta boxes are the original ones.
I used the same threshold as #HansHirse.
The equals sign still needs some work. Either a higher dilation kernel size or use the same technique vertically.
Disclosure: I am the author of OpenCV Wrapper.
Easy-to-read solution:
contours = get_contours(frame)
boxes = [cv2.boundingRect(c) for c in contours]
boxes = merge_boxes(boxes, x_val=40, y_val=20) # Where x_val and y_val are axis thresholds
def get_contours(frame): # Returns a list of contours
contours = cv2.findContours(frame, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = imutils.grab_contours(contours)
return contours
def merge_boxes(boxes, x_val, y_val):
size = len(boxes)
if size < 2:
return boxes
if size == 2:
if boxes_mergeable(boxes[0], boxes[1], x_val, y_val):
boxes[0] = union(boxes[0], boxes[1])
del boxes[1]
return boxes
boxes = sorted(boxes, key=lambda r: r[0])
i = size - 2
while i >= 0:
if boxes_mergeable(boxes[i], boxes[i + 1], x_val, y_val):
boxes[i] = union(boxes[i], boxes[i + 1])
del boxes[i + 1]
i -= 1
return boxes
def boxes_mergeable(box1, box2, x_val, y_val):
(x1, y1, w1, h1) = box1
(x2, y2, w2, h2) = box2
return max(x1, x2) - min(x1, x2) - minx_w(x1, w1, x2, w2) < x_val \
and max(y1, y2) - min(y1, y2) - miny_h(y1, h1, y2, h2) < y_val
def minx_w(x1, w1, x2, w2):
return w1 if x1 <= x2 else w2
def miny_h(y1, h1, y2, h2):
return h1 if y1 <= y2 else h2
def union(a, b):
x = min(a[0], b[0])
y = min(a[1], b[1])
w = max(a[0] + a[2], b[0] + b[2]) - x
h = max(a[1] + a[3], b[1] + b[3]) - y
return x, y, w, h
--> If you have bounding boxes and want to merge along both X and Y directions, use this snippet
--> Adjust x_pixel_value and y_pixel_value to your preferences
--> But for this, you need to have the bounding boxes
import cv2
img = cv2.imread(your image path)
x_pixel_value = 5
y_pixel_value = 6
bboxes_list = [] # your bounding boxes list
rects_used = []
for i in bboxes_list:
rects_used.append(False)
end_bboxes_list = []
for enum,i in enumerate(bboxes_list):
if rects_used[enum] == True:
continue
xmin = i[0]
xmax = i[2]
ymin = i[1]
ymax = i[3]
for enum1,j in enumerate(bboxes_list[(enum+1):], start = (enum+1)):
i_xmin = j[0]
i_xmax = j[2]
i_ymin = j[1]
i_ymax = j[3]
if rects_used[enum1] == False:
if abs(ymin - i_ymin) < x_pixel_value:
if abs(xmin-i_xmax) < y_pixel_value or abs(xmax-i_xmin) < y_pixel_value:
rects_used[enum1] = True
xmin = min(xmin,i_xmin)
xmax = max(xmax,i_xmax)
ymin = min(ymin,i_ymin)
ymax = max(ymax,i_ymax)
final_box = [xmin,ymin,xmax,ymax]
end_bboxes_list.append(final_box)
for i in end_bboxes_list:
cv2.rectangle(img,(i[0],i[1]),(i[2],i[3]), color = [0,255,0], thickness = 2)
cv2.imshow("Image",img)
cv2.waitKey(10000)
cv2.destroyAllWindows()

Incorrect results from A*/Path-finding algorithm

I'm trying to setup a path-finder in which I pass a maze (array of 1/0's with 1 being obstacles), start point/end point and for it to return the optimal path.
I have code from the following as my base, with the 'main' function modified as shown below.
https://medium.com/#nicholas.w.swift/easy-a-star-pathfinding-7e6689c7f7b2
def main():
maze = [[0,1,0,0,...],[0,0,0,0...],[...]...,[...]] #Example 2D List
start = (4, 33)
end = (200, 200)
path = astar(maze, start, end)
print(path)
#Create blank image for openCV
img = np.zeros((221,221,3), np.uint8)
x, y = 0, 0
red = [0, 0, 255]
#Draw obstacles
for row in maze:
y+=1
x=0
for value in row:
x+=1
if value == 1: img[y, x]=red
#Draw path
for x, y in path:
img[y, x] = (255, 0, 0)
cv2.imshow("Image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
Full maze used to make the map is here: https://pastebin.com/wT6dGQnj
this is a simplified case of a larger project, so list has been 'hard coded' here.
Below is the output, which seems to be incorrect as the path crosses multiple obstacles:
Results
I think the problem is in how you're drawing the walls, not the path. You start with y=1 and also seem to switch the x and y there. I used the 10x10 maze in the original code, and things looked correct once I changed the wall-drawing part as follows:
n = 10
img = np.zeros((n,n,3), np.uint8)
x, y = 0, 0
red = [0, 0, 255]
# Draw the walls in red. This is the part I changed.
for i in range(n):
for j in range(n):
if maze[i][j] == 1:
img[i,j] = red
# Draw the path in blue
for x, y in path:
img[x, y] = (255, 0, 0)
There's probably a more efficient way though you can map maze to img without doing two nested for loops like I did here.

Categories

Resources