Hello I am trying to Use Tkinter as a GUI for the Prediction of a Binary Model. but keep getting a problem IndexError: tuple index out of range I Believe that there is a problem with the Size Inputs but I am lost as to where to start on where to modify so that the out of the Creation of the Model fits the predictors Desired Input
this is the Code I used for the creation of the Model
# dimensions of our images.
img_width, img_height = 480, 289
train_data_dir = r'C:\Users\felix\OneDrive\Desktop\Datasets\TRAIN'
validation_data_dir = r'C:\Users\felix\OneDrive\Desktop\Datasets\TEST'
nb_train_samples = 23
nb_validation_samples = 6
epochs = 1
batch_size = 1
if K.image_data_format() == 'channels_first':
input_shape = (1, img_width, img_height)
else:
input_shape = (img_width, img_height, 1)
from keras.applications.vgg16 import VGG16
from keras.models import Model
from keras.layers import Dense
vgg = VGG16(include_top=False, weights='imagenet', input_shape=[], pooling='avg')
x = vgg.output
x = Dense(1, activation='sigmoid')(x)
model = Model(vgg.input, x)
model.summary()
model.compile(keras.optimizers.Adam(lr=1e-5), 'binary_crossentropy', metrics=['accuracy'])
model.save('working.h5')
# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size)
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
import seaborn as sns
test_steps_per_epoch = numpy.math.ceil(validation_generator.samples / validation_generator.batch_size)
predictions = model.predict_generator(validation_generator, steps=test_steps_per_epoch)
# Get most likely class
predicted_classes = numpy.argmax(predictions, axis=1)
true_classes = validation_generator.classes
class_labels = list(validation_generator.class_indices.keys())
report = classification_report(true_classes, predicted_classes, target_names=class_labels)
print(report)
cm=confusion_matrix(true_classes,predicted_classes)
sns.heatmap(cm, annot=True)
print(cm)
plt.show()
while this is the Tkinter Code I Used for the Model Prediction
import tensorflow as tf
model = tf.keras.models.load_model(r'C:\Users\felix\PycharmProjects\CatsDogs\working.h5')
classes = ["Health", "Unhealthy"]
top=tk.Tk()
top.geometry('800x600')
top.title('Health Detector')
top.configure(background='white')
label=Label(top,background='white', font=('arial',20,'bold'))
sign_image = Label(top)
def prepare(filepath):
IMG_SIZE = 50 # 50 in txt-based
img_array = cv2.imread(filepath, cv2.IMREAD_GRAYSCALE) # read in the image, convert to grayscale
new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) # resize image to match model's expected sizing
return new_array.reshape(-1, IMG_SIZE, IMG_SIZE, 1) # return the image with shaping that TF wants.
def classify(file_path):
global label_packed
pred = (model.predict(file_path) > 0.5).astype("int32")
sign = classes[pred[0, 0]]
print(sign)
label.configure(foreground='black', text=sign)
def show_classify_button(file_path):
classify_b=Button(top,text="Authenticate",
command=lambda: classify(file_path),padx=10,pady=5)
classify_b.configure(background='black', foreground='white',
font=('arial',10,'bold'))
classify_b.place(relx=0.43,rely=0.93)
def upload_image():
try:
file_path=filedialog.askopenfilename()
uploaded=Image.open(file_path)
uploaded.thumbnail(((top.winfo_width()/2.25),
(top.winfo_height()/2.25)))
im=ImageTk.PhotoImage(uploaded)
sign_image.configure(image=im)
sign_image.image=im
label.configure(text='')
show_classify_button(file_path)
except:
pass
upload=Button(top,text="Upload the Findings",command=upload_image,
padx=10,pady=5)
upload.configure(background='black', foreground='white',
font=('arial',10,'bold'))
upload.pack(side=BOTTOM,pady=50)
sign_image.pack(side=BOTTOM,expand=True)
label.pack(side=BOTTOM,expand=True)
heading = Label(top, text="Health Detector",pady=20, font=('arial',20,'bold'))
heading.configure(background='white',foreground='black')
heading.pack()
top.mainloop()
I tried to Change the IMG_SIZE into img_width, img_height Also I have tried to change the Input Shapes but still same problem Maybe I did it wrong or that was not the right fix. I was Expecting for Tkinter to have an Output of Either Healthy or Unhealthy
here are the traceback
Traceback (most recent call last):
File "C:\Users\felix\anaconda3\envs\pythonProject\lib\tkinter\__init__.py", line 1921, in __call__
return self.func(*args)
File "C:\Users\felix\Dropbox\PC\Downloads\64x300-CNN.model-20230115T145146Z-001\64x300-CNN.model\fly.py", line 35, in <lambda>
command=lambda: classify(file_path),padx=10,pady=5)
File "C:\Users\felix\Dropbox\PC\Downloads\64x300-CNN.model-20230115T145146Z-001\64x300-CNN.model\fly.py", line 28, in classify
pred = (model.predict(file_path) > 0.5).astype("int32")
File "C:\Users\felix\anaconda3\envs\pythonProject\lib\site-packages\keras\utils\traceback_utils.py", line 70, in error_handler
raise e.with_traceback(filtered_tb) from None
File "C:\Users\felix\anaconda3\envs\pythonProject\lib\site-packages\tensorflow\python\framework\tensor_shape.py", line 906, in __getitem__
return self._dims[key]
Related
I trained a ResNetV2 model for face recognition and got a validation accuracy of about 90%. I am using 320 grayscale images from 40 classes for training. I am unable to preprocess the image so as to use model.predict() function. I did not use preprocess_input function because I was getting a low accuracy when using that to train the model. Please help
base_model = ResNet50V2(weights='imagenet',include_top=False,input_shape=(224, 224,3))
# don't train existing weights
for layer in base_model.layers:
layer.trainable = False
x=base_model.output
x=GlobalAveragePooling2D()(x)
x=Dense(1024,activation='relu')(x) #dense layer 1
x=Dropout(0.2)(x)
preds=Dense(40,activation='softmax')(x) #final layer with softmax activation
model=Model(inputs=base_model.input,outputs=preds)
model.summary()
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory(train_path,
target_size = (224,224),
batch_size = 8,
class_mode = 'categorical')
test_set = test_datagen.flow_from_directory(valid_path,
target_size = (224,224),
batch_size = 8,
class_mode = 'categorical')
model.compile(optimizer='Adam',loss='categorical_crossentropy',metrics=['accuracy'])
training = model.fit(
training_set,
validation_data=test_set,
epochs=40,
steps_per_epoch=8
)
img = image.load_img('/content/9.pgm.jpg.jpg', target_size=(224,224,3))
pixels = image.img_to_array(img)
pixels = pixels.astype('float32')
pixels /= 255.0
model.predict(pixels)
Edit: the code used for preprocessing, which I eventually discarded was -
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.resnet50 import preprocess_input
datagen = ImageDataGenerator(preprocessing_function=preprocess_input)
training_set = datagen.flow_from_directory(train_path,
target_size = (224,224),
batch_size = 8,
class_mode = 'categorical')
test_set = datagen.flow_from_directory(valid_path,
target_size = (224,224),
batch_size = 8,
class_mode = 'categorical')
The correct code to be used for prediction is as below:
from PIL import Image
from tensorflow.keras.utils import load_img
class_names=['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips']
img = tf.keras.utils.load_img('./dataset/rose_test.jpeg', target_size=(224,224))
pixels =tf.keras.utils.img_to_array(img)
pixels=tf.expand_dims(pixels, 0)
#pixels = pixels.astype('float32')
pixels /= 255.0
pred = model.predict(pixels) # as I have used 5 classes dataset
pred
Output:
array([[1.0110709e-07, 6.0101044e-08, 9.4008398e-01, 4.7367696e-08,
5.9915919e-02]], dtype=float32)
To get class name of loaded image:
print(class_names[np.argmax(p)])
Output:
roses
I was working on a binary image classification deep learning model using transfer learning in Google colab.
!wget https://storage.googleapis.com/mledu-datasets/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5 -O /tmp/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5
local_weights_file = '/tmp/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5'
pre_trained_model = InceptionV3(input_shape = (300, 300, 3),
include_top = False,
weights = None)
pre_trained_model.load_weights(local_weights_file)
for layer in pre_trained_model.layers:
layer.trainable = False
last_layer = pre_trained_model.get_layer('mixed7')
last_output = last_layer.output
x = layers.Flatten()(last_output)
x = layers.Dense(512, activation='relu')(x)
x = layers.Dropout(0.2)(x)
x = layers.Dense(1, activation='sigmoid')(x)
model = Model(pre_trained_model.input, x)
from tensorflow.keras.optimizers import RMSprop
model.compile(optimizer=RMSprop(lr=0.0001),
loss='binary_crossentropy',
metrics=['accuracy'])
from tensorflow.keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rescale=1/255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode="nearest")
validation_datagen = ImageDataGenerator(rescale=1/255)
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(300, 300),
batch_size=100,
class_mode='binary')
validation_generator = validation_datagen.flow_from_directory(
validation_dir,
target_size=(300, 300),
batch_size=100,
class_mode='binary')
history = model.fit(
train_generator,
steps_per_epoch=20,
epochs=30,
verbose=1,
validation_data=validation_generator,
validation_steps=10,
callbacks=[callbacks])
import numpy as np
from google.colab import files
from tensorflow.keras.preprocessing import image
uploaded=files.upload()
for fn in uploaded.keys():
path='/content/' + fn
img=image.load_img(path, target_size=(300, 300))
x=image.img_to_array(img)
x=np.expand_dims(x, axis=0)
images = np.vstack([x])
classes = model.predict(images, batch_size=10)
print(classes)
Even though after training the model and obtaining a quite good accuracy on training and validation data, the model is always predicting 1 for any new image. I have tried changing the batch size, epochs, learning rate, etc. But, no luck.
Can anyone explain what's the problem here?
I am trying to learn how to use multi-models input with flow_from_directory, but there is something I can't figure out. thanks for your help.
The way I understand is that we supply the fit_generator with the two_image_generator and the and the fit method will infer the labels.... what I am missing...
def two_image_generator(generator,
directory,
batch_size,
shuffle = False,
img_size1 = (224,224),
img_size2 = (299,299)):
gen1 = generator.flow_from_directory(
# This is the target directory
directory,
# All images will be resized to target height and width.
target_size=img_size1,
batch_size=batch_size,
# Since we use categorical_crossentropy loss, we need categorical labels
class_mode='categorical',
shuffle = shuffle,
seed = 1)
gen2 = generator.flow_from_directory(
# This is the target directory
directory,
# All images will be resized to target height and width.
target_size=img_size2,
batch_size=batch_size,
# Since we use categorical_crossentropy loss, we need categorical labels
class_mode='categorical',
shuffle = shuffle,
seed = 1)
while True:
X1i = gen1.next()
X2i = gen2.next()
if y_col:
yield [X1i[0], X2i[0]], X1i[1] #X1i[1] is the label
else:
yield [X1i, X2i]
#add data_augmentation
train_aug_datagen = ImageDataGenerator(
rotation_range = 20,
shear_range = 0.1,
zoom_range = 0.2,
width_shift_range = 0.1,
height_shift_range = 0.1,
horizontal_flip = True
)
train_generator = two_image_generator(train_aug_datagen,
train_dir,
batch_size = batch_size,
shuffle = True)
validation_datagen = ImageDataGenerator()
validation_generator = two_image_generator(validation_datagen,
validation_dir,
batch_size = batch_size,
shuffle = True)
def create_base_model(MODEL, img_size, lambda_fun = None):
inp = Input(shape = (img_size[0], img_size[1], 3))
x = inp
if lambda_fun:
x = Lambda(lambda_fun)(x)
base_model = MODEL(input_tensor = x, weights = 'imagenet',
include_top = False, pooling = 'avg')
model = Model(inp, base_model.output)
return model
#define vgg + resnet50 + densenet
model1 = create_base_model(vgg16.VGG16, (224, 224), vgg16.preprocess_input)
model2 = create_base_model(resnet50.ResNet50, (224, 224), resnet50.preprocess_input)
model3 = create_base_model(inception_v3.InceptionV3, (299, 299), inception_v3.preprocess_input)
model1.trainable = False
model2.trainable = False
model3.trainable = False
inpA = Input(shape = (224, 224, 3))
inpB = Input(shape = (299, 299, 3))
out1 = model1(inpA)
out2 = model2(inpA)
out3 = model3(inpB)
x = Concatenate()([out1, out2, out3])
x = Dropout(0.2)(x)
x = Dense(2, activation='softmax')(x)
model = Model([inpA, inpB], x)
############################################################################
trained_models_path = './models/VggFace_best_model'
model_names = trained_models_path + '_epoch_{epoch:02d}_val_acc_{val_accuracy:.4f}.hdf5'
checkpoint = ModelCheckpoint(model_names, 'val_accuracy', verbose=1, save_best_only=True)
############################################################################
early = EarlyStopping(monitor='val_loss', min_delta=0, patience=3, verbose=1, mode='auto')
callbacks = [checkpoint,early]
history = model.fit_generator(train_generator,
steps_per_epoch= NUM_TRAIN //batch_size,
epochs=100,
validation_data=validation_generator,
validation_steps= NUM_TEST //batch_size,
verbose=1,
use_multiprocessing=True,
workers=14,
callbacks=callbacks )
NameError: name 'y_col' is not defined
#add data_augmentation
train_aug_datagen = ImageDataGenerator(
rescale = 1./255,
rotation_range = 20,
shear_range = 0.1,
zoom_range = 0.2,
width_shift_range = 0.1,
height_shift_range = 0.1,
horizontal_flip = True
)
validation_datagen = ImageDataGenerator(rescale = 1./255)
def two_image_generator(generator,
directory,
batch_size,
shuffle = False,
img_size1 = (224,224),
img_size2 = (299,299)):
gen1 = generator.flow_from_directory(
# This is the target directory
directory,
# All images will be resized to target height and width.
target_size=img_size1,
batch_size=batch_size,
# Since we use categorical_crossentropy loss, we need categorical labels
class_mode='categorical',
shuffle = shuffle,
seed = 7)
gen2 = generator.flow_from_directory(
# This is the target directory
directory,
# All images will be resized to target height and width.
target_size=img_size2,
batch_size=batch_size,
# Since we use categorical_crossentropy loss, we need categorical labels
class_mode='categorical',
shuffle = shuffle,
seed = 7)
while True:
X1i = gen1.next()
X2i = gen2.next()
yield [X1i[0], X2i[0]], X2i[1] #Yield both images and their mutual label
train_generator = two_image_generator(train_aug_datagen,
train_dir,
batch_size = batch_size,
shuffle = True)
validation_generator = two_image_generator(validation_datagen,
validation_dir,
batch_size = batch_size,
shuffle = True)
############################################################################
trained_models_path = './models/VggFace_best_model'
model_names = trained_models_path + '_epoch_{epoch:02d}_val_acc_{val_accuracy:.4f}.hdf5'
checkpoint = ModelCheckpoint(model_names, 'val_accuracy', verbose=1, save_best_only=True)
############################################################################
early = EarlyStopping(monitor='val_loss', min_delta=0, patience=3, verbose=1, mode='auto')
callbacks = [checkpoint,early]
history = model.fit_generator(train_generator,
steps_per_epoch= NUM_TRAIN //batch_size,
epochs=100,
validation_data=validation_generator,
validation_steps= NUM_TEST //batch_size,
verbose=1,
use_multiprocessing=True,
# workers=14,
callbacks=callbacks )
Epoch 1/100
Found 5000 images belonging to 2 classes.
Found 5000 images belonging to 2 classes.
Found 52700 images belonging to 2 classes.
Found 52700 images belonging to 2 classes.
340/625 [===============>..............] - ETA: 4:37 - loss: 7.7634 - acc: 0.4926
import pandas as pd
I implement a multiclass classifier with keras.
My problem now is to make predictions, because I obtain an error. I believe that it is related with the prediction part of the code.
The code is the following:
import numpy as np
from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img
from keras.models import Sequential
from keras.layers import Dropout, Flatten, Dense
from keras import applications
from keras.utils.np_utils import to_categorical
from PIL import Image
import matplotlib.pyplot as plt
import math
%matplotlib inline
# dimensions of our images.
img_width, img_height = 150, 150
top_model_weights_path = 'bottleneck_fc_model.h5'
train_data_dir = 'data/train'
validation_data_dir = 'data/validation'
epochs = 30
batch_size = 16
def save_bottleneck_features():
model = applications.VGG16(include_top=False, weights='imagenet')
datagen = ImageDataGenerator(rescale=1. / 255)
generator = datagen.flow_from_directory(train_data_dir, target_size=(img_width, img_height), \
batch_size=batch_size, class_mode=None, shuffle=False)
n_train_samples = len(generator.filenames)
n_classes = len(generator.class_indices)
print("Number of train files = {}".format(n_train_samples))
print("Number of classes = {}".format(n_classes))
predict_size_train = int(math.ceil(n_train_samples / batch_size))
bottleneck_features_train = model.predict_generator(generator, predict_size_train)
np.save('bottleneck_features_train.npy', bottleneck_features_train)
generator = datagen.flow_from_directory(validation_data_dir, target_size=(img_width, img_height), \
batch_size=batch_size, class_mode=None, shuffle=False)
n_validation_samples = len(generator.filenames)
predict_size_validation = int(math.ceil(n_validation_samples / batch_size))
bottleneck_features_validation = model.predict_generator(generator, predict_size_validation)
np.save('bottleneck_features_validation.npy', bottleneck_features_validation)
def train_top_model():
datagen_top = ImageDataGenerator(rescale=1./255)
generator_top = datagen_top.flow_from_directory(train_data_dir, target_size=(img_width, img_height),\
batch_size=batch_size, class_mode='categorical', \
shuffle=False)
n_train_samples = len(generator_top.filenames)
n_classes = len(generator_top.class_indices)
# load the bottleneck features saved earlier
train_data = np.load('bottleneck_features_train.npy')
# get the class lebels for the training data, in the original order
train_labels = generator_top.classes
# convert the training labels to categorical vectors
train_labels = to_categorical(train_labels, num_classes=n_classes)
generator_top = datagen_top.flow_from_directory(validation_data_dir, target_size=(img_width, img_height),\
batch_size=batch_size, class_mode=None, shuffle=False)
n_validation_samples = len(generator_top.filenames)
validation_data = np.load('bottleneck_features_validation.npy')
validation_labels = generator_top.classes
validation_labels = to_categorical(validation_labels, num_classes=n_classes)
model = Sequential()
model.add(Flatten(input_shape=train_data.shape[1:]))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(n_classes, activation='sigmoid'))
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy', metrics=['accuracy'])
history = model.fit(train_data, train_labels, epochs=epochs, batch_size=batch_size,\
validation_data=(validation_data, validation_labels))
model.save_weights(top_model_weights_path)
(eval_loss, eval_accuracy) = model.evaluate(validation_data, validation_labels, \
batch_size=batch_size, verbose=1)
print("[INFO] accuracy: {:.2f}%".format(eval_accuracy * 100))
print("[INFO] Loss: {}".format(eval_loss))
return model
To execute the program we do:
save_bottleneck_features()
model = train_top_model()
when I try to make a prediction, using the following code:
img_path = 'image_test/bird.jpg'
# predicting images
img = load_img(img_path, target_size=(img_width, img_height))
x = img_to_array(img)
x = np.expand_dims(x, axis=0)
images = np.vstack([x])
classes = model.predict_classes(images, batch_size=10)
print (classes)
it gives me the following error:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-44-c3652addeabc> in <module>()
8
9 images = np.vstack([x])
---> 10 classes = model.predict_classes(images, batch_size=10)
11 print (classes)
~/anaconda/lib/python3.6/site-packages/keras/models.py in predict_classes(self, x, batch_size, verbose)
1016 A numpy array of class predictions.
1017 """
-> 1018 proba = self.predict(x, batch_size=batch_size, verbose=verbose)
1019 if proba.shape[-1] > 1:
1020 return proba.argmax(axis=-1)
~/anaconda/lib/python3.6/site-packages/keras/models.py in predict(self, x, batch_size, verbose)
911 if not self.built:
912 self.build()
--> 913 return self.model.predict(x, batch_size=batch_size, verbose=verbose)
914
915 def predict_on_batch(self, x):
~/anaconda/lib/python3.6/site-packages/keras/engine/training.py in predict(self, x, batch_size, verbose, steps)
1693 x = _standardize_input_data(x, self._feed_input_names,
1694 self._feed_input_shapes,
-> 1695 check_batch_axis=False)
1696 if self.stateful:
1697 if x[0].shape[0] > batch_size and x[0].shape[0] % batch_size != 0:
~/anaconda/lib/python3.6/site-packages/keras/engine/training.py in _standardize_input_data(data, names, shapes, check_batch_axis, exception_prefix)
142 ' to have shape ' + str(shapes[i]) +
143 ' but got array with shape ' +
--> 144 str(array.shape))
145 return arrays
146
ValueError: Error when checking : expected flatten_8_input to have shape (None, 7, 7, 512) but got array with shape (1, 150, 150, 3)
I finally found the answer.
In order to predict the class of an image, we need to run it through the same pipeline as before.
The prediction function must be:
image_path = 'image_test/bird.jpg'
orig = cv2.imread(image_path)
print("[INFO] loading and preprocessing image...")
image = load_img(image_path, target_size=(img_width, img_height))
image = img_to_array(image)
# important! otherwise the predictions will be '0'
image = image / 255
image = np.expand_dims(image, axis=0)
# build the VGG16 network
model = applications.VGG16(include_top=False, weights='imagenet')
# get the bottleneck prediction from the pre-trained VGG16 model
bottleneck_prediction = model.predict(image)
# build top model
model = Sequential()
model.add(Flatten(input_shape=bottleneck_prediction.shape[1:]))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(n_classes, activation='softmax'))
model.load_weights(top_model_weights_path)
# use the bottleneck prediction on the top model to get the final classification
class_predicted = model.predict_classes(bottleneck_prediction)
inID = class_predicted[0]
class_dictionary = generator_top.class_indices
inv_map = {v: k for k, v in class_dictionary.items()}
label = inv_map[inID]
# get the prediction label
print("Image ID: {}, Label: {}".format(inID, label))
I am using keras applications for transfer learning with resnet 50 and inception v3 but when predicting always get [[ 0.]]
The below code is for a binary classification problem. I have also tried vgg19 and vgg16 but they work fine, its just resnet and inception. The dataset is a 50/50 split. And I am only changing the model = applications.resnet50.ResNet50 line of code for each model.
below is the code:
from keras.callbacks import EarlyStopping
early_stopping = EarlyStopping(monitor='val_loss', patience=2)
img_width, img_height = 256, 256
train_data_dir = xxx
validation_data_dir = xxx
nb_train_samples = 14000
nb_validation_samples = 6000
batch_size = 16
epochs = 50
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
model = applications.resnet50.ResNet50(weights = "imagenet", include_top=False, input_shape = (img_width, img_height, 3))
from keras.callbacks import EarlyStopping
early_stopping = EarlyStopping(monitor='val_loss', patience=2)
img_width, img_height = 256, 256
train_data_dir = xxx
validation_data_dir = xxx
nb_train_samples = 14000
nb_validation_samples = 6000
batch_size = 16
epochs = 50
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
model = applications.resnet50.ResNet50(weights = "imagenet", include_top=False, input_shape = (img_width, img_height, 3))
#Freeze the layers which you don't want to train. Here I am freezing the first 5 layers.
for layer in model.layers[:5]:
layer.trainable = False
#Adding custom Layers
x = model.output
x = Flatten()(x)
x = Dense(1024, activation="relu")(x)
x = Dropout(0.5)(x)
#x = Dense(1024, activation="relu")(x)
predictions = Dense(1, activation="sigmoid")(x)
# creating the final model
model_final = Model(input = model.input, output = predictions)
# compile the model
model_final.compile(loss = "binary_crossentropy", optimizer = optimizers.SGD(lr=0.0001, momentum=0.9), metrics=["accuracy"])
# Initiate the train and test generators with data Augumentation
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
# Save the model according to the conditions
#checkpoint = ModelCheckpoint("vgg16_1.h5", monitor='val_acc', verbose=1, save_best_only=True, save_weights_only=False, mode='auto', period=1)
#early = EarlyStopping(monitor='val_acc', min_delta=0, patience=10, verbose=1, mode='auto')
model_final.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size,
callbacks=[early_stopping])
from keras.models import load_model
import numpy as np
from keras.preprocessing.image import img_to_array, load_img
#test_model = load_model('vgg16_1.h5')
img = load_img('testn7.jpg',False,target_size=(img_width,img_height))
x = img_to_array(img)
x = np.expand_dims(x, axis=0)
#preds = model_final.predict_classes(x)
prob = model_final.predict(x, verbose=0)
#print(preds)
print(prob)
Note That model_final.evaluate_generator(validation_generator, nb_validation_samples) provides an expected accuracy like 80% its just predict that is always 0.
Just find it strange that vgg19 and vgg16 work fine but not resnet50 and inception. Do these models require something else to work?
Any insight would be great.
Thanks in advance.
I was running into similar problem. You are scaling all the RGB values from 0-255 to 0-1 during training.
Thse same should be done at the time of prediction.
Try
x = img_to_array(img)
x = x/255