Creating more than 4 stacked line charts with bokeh interactive legends - python

I was consulting the bokeh user guide (link) on creating interactive legends (see subsection on "Hiding glyphs").
The code given allows me to create up to 4 stacked line charts. For example, if I try to create a fifth line chart ("AAP"):
p = figure(width=800, height=250, x_axis_type="datetime")
p.title.text = 'Click on legend entries to hide the corresponding lines'
import pandas as pd
from bokeh.palettes import Spectral4
from bokeh.plotting import figure, show
from bokeh.sampledata.stocks import AAPL, GOOG, IBM, MSFT
for data, name, color in zip([AAPL, GOOG, IBM, MSFT, AAPL], ["AAPL", "GOOG", "IBM", "MSFT", "AAP"], Spectral4):
df = pd.DataFrame(data)
df['date'] = pd.to_datetime(df['date'])
p.line(df['date'], df['close'], line_width=2, color=color, alpha=0.8, legend_label=name)
p.legend.location = "top_left"
p.legend.click_policy="hide"
show(p)
it will still only show four.
I was wondering if it is possible to extend this code and create many more line charts (say 20) and if so, how this can be done.
Thank you

Your approach is working fine and would work, if you use Spectral5 instead of Spectral4 as palette. You have to know, that zip iterates over all lists and stops if one list has no more items. That was the case.
Minimal working example:
import pandas as pd
from bokeh.plotting import figure, show, output_notebook
from bokeh.sampledata.stocks import AAPL, GOOG, IBM, MSFT
output_notebook()
p = figure(width=800, height=250, x_axis_type="datetime")
p.title.text = 'Click on legend entries to hide the corresponding lines'
dataset = [AAPL, GOOG, IBM, MSFT, AAPL]
nameset = ["AAPL", "GOOG", "IBM", "MSFT", "AAP"]
colorset = ['blue', 'red', 'green', 'magenta', 'black']
for data, name, color in zip(dataset, nameset, colorset):
df = pd.DataFrame(data)
df['date'] = pd.to_datetime(df['date'])
p.line(df['date'], df['close'], line_width=2, color=color, alpha=0.8, legend_label=name)
p.legend.location = "top_left"
p.legend.click_policy="hide"
show(p)
Output:
Comment
For this I used bokeh 2.4.3 but with bokeh 3.+ this should work, too.

Related

Bokeh: legend with MultiIndex table

I just discovered Bokeh recently, and I try to display a legend for each day of week (represented by 'startdate_dayweek'). The legend should contain the color for each row corresponding to each day.
import pandas as pd
from bokeh.plotting import figure, show
from bokeh.io import output_file
from bokeh.palettes import Set1_7
output_file("conso_daily.html")
treatcriteria_data_global = pd.read_csv(r"treatcriteria_evolution.csv", sep=';')
final_global_data = treatcriteria_data_global.groupby(['startdate_weekyear','startdate_dayweek'],as_index = False).sum().pivot('startdate_weekyear','startdate_dayweek').fillna(0)
numlines = len(final_global_data.columns)
palette = Set1_7[0:numlines]
ts_list_of_list = []
for i in range(0,len(final_global_data.columns)):
ts_list_of_list.append(final_global_data.index)
vals_list_of_list = final_global_data.values.T.tolist()
p = figure(width=500, height=300)
p.left[0].formatter.use_scientific = False
p.multi_line(ts_list_of_list, vals_list_of_list,
legend='startdate_dayweek',
line_color = palette,
line_width=4)
show(p)
But I don't have the expected result in the legend:
How to have the legend for each day? Is the problem due to the fact that I created a MultiIndex table? Thanks.
The multi_line() function can take the parameter legend_field or legend_group. Both are working very well for your usecase, if you use a ColumnDataSource as source. Keep in mind, that a error will come if you use both parameters at the same time.
Minimal Example
from bokeh.plotting import figure, show, output_notebook
from bokeh.models import ColumnDataSource
output_notebook()
source = ColumnDataSource(dict(
xs=[[1,2,3,4,5],[1,2,3,4,5],[1,2,3,4,5]],
ys=[[1,2,3,4,5],[1,1,1,1,5],[5,4,3,2,1]],
legend =['red', 'green', 'blue'],
line_color = ['red', 'green', 'blue']))
p = figure(width=500, height=300)
p.multi_line(xs='xs',
ys='ys',
legend_field ='legend',
line_color = 'line_color',
source=source,
line_width=4)
show(p)
Output

Bokeh scatter plot: is it possible to overlay a line colored by category?

I have a dataframe that details sales of various product categories vs. time. I'd like to make a "line and marker" plot of sales vs. time, per category. To my surprise, this appears to be very difficult in Bokeh.
The scatter plot is easy. But then trying to overplot a line of sales vs. date with the same source (so I can update both scatter and line plots in one go when the source updates) and in such a way that the colors of the line match the colors of the scatter plot markers proves near impossible.
Minimal reproducible example with contrived data:
import pandas as pd
df = pd.DataFrame({'Date':['2020-01-01','2020-01-02','2020-01-01','2020-01-02'],\
'Product Category':['shoes','shoes','grocery','grocery'],\
'Sales':[100,180,21,22],'Colors':['red','red','green','green']})
df['Date'] = pd.to_datetime(df['Date'])
from bokeh.io import output_notebook
output_notebook()
from bokeh.io import output_file, show
from bokeh.plotting import figure
source = ColumnDataSource(df)
plot = figure(x_axis_type="datetime", plot_width=800, toolbar_location=None)
plot.scatter(x="Date",y="Sales",size=15, source=source, fill_color="Colors", fill_alpha=0.5, \
line_color="Colors",legend="Product Category")
for cat in list(set(source.data['Product Category'])):
tmp = source.to_df()
col = tmp[tmp['Product Category']==cat]['Colors'].values[0]
plot.line(x="Date",y="Sales",source=source, line_color=col)
show(plot)
Here's what it looks like, which is clearly wrong:
Here's what I want and don't know how to make:
Can Bokeh not make such plots, where scatter markers and lines have the same color per category, with a legend?
With bokeh it is often helpful to first think about the visualisation you want and then structuring the data source appropriately. You want two lines, on per category, the x axis is time and y axis is the sales. Then a natural way to structure your data source is the following:
df = pd.DataFrame({'Date':['2020-01-01','2020-01-02'],
'Shoe Sales':[100, 180],
'Grocery Sales': [21, 22]
})
from bokeh.io import output_notebook
output_notebook()
from bokeh.io import output_file, show
from bokeh.plotting import figure
source = ColumnDataSource(df)
plot = figure(x_axis_type="datetime", plot_width=800, toolbar_location=None)
categories = ["Shoe Sales", "Grocery Sales"]
colors = {"Shoe Sales": "red", "Grocery Sales": "green"}
for category in categories:
plot.scatter(x="Date",y=category,size=15, source=source, fill_color=colors[category], legend=category)
plot.line(x="Date",y=category,source=source, line_color=colors[category])
show(plot)
The solutions is to group your data. Then you can plot lines for each group.
Minimal Example
import pandas as pd
from bokeh.plotting import figure, show, output_notebook
output_notebook()
df = pd.DataFrame({'Date':['2020-01-01','2020-01-02','2020-01-01','2020-01-02'],
'Product Category':['shoes','shoes','grocery','grocery'],
'Sales':[100,180,21,22],'Colors':['red','red','green','green']})
df['Date'] = pd.to_datetime(df['Date'])
plot = figure(x_axis_type="datetime",
plot_width=400,
plot_height=400,
toolbar_location=None
)
plot.scatter(x="Date",
y="Sales",
size=15,
source=df,
fill_color="Colors",
fill_alpha=0.5,
line_color="Colors",
legend_field="Product Category"
)
for color in df['Colors'].unique():
plot.line(x="Date", y="Sales", source=df[df['Colors']==color], line_color=color)
show(plot)
Output

Bokeh Interactive Legends Hovertool Callbacks

As shown below I used the example code of the Bokeh library. I tried add the hovertool and edit the output of the hovertool, but there are only "???" shown.
Can anybody give me a tip, to add and configure the hover tool in the example code?
import pandas as pd
from bokeh.palettes import Spectral4
from bokeh.plotting import figure, output_file, show
from bokeh.sampledata.stocks import AAPL, IBM, MSFT, GOOG
p = figure(plot_width=800, plot_height=250, x_axis_type="datetime")
p.title.text = 'Click on legend entries to hide the corresponding lines'
for data, name, color in zip([AAPL, IBM, MSFT, GOOG], ["AAPL", "IBM", "MSFT", "GOOG"], Spectral4):
df = pd.DataFrame(data)
df['date'] = pd.to_datetime(df['date'])
p.line(df['date'], df['close'], line_width=2, color=color, alpha=0.8, legend=name)
p.legend.location = "top_left"
p.legend.click_policy="hide"
output_file("interactive_legend.html", title="interactive_legend.py example")
show(p)

bokeh is not plotting my graphs after giving input

After seeing the capabilities of Bokeh I started working with it. Now I am trying to make a Vbar with my dataset.
my dataset (10 rows)
dataset
I have read the tutorial quite a number of times and used the example provided by the official documentation:
https://hub.mybinder.org/user/bokeh-bokeh-notebooks-ate6xt0k/notebooks/tutorial/07%20-%20Bar%20and%20Categorical%20Data%20Plots.ipynb
from bokeh.models import ColumnDataSource
from bokeh.palettes import Spectral6
fruits = ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries']
counts = [5, 3, 4, 2, 4, 6]
source = ColumnDataSource(data=dict(fruits=fruits, counts=counts, color=Spectral6))
p = figure(x_range=fruits, plot_height=250, y_range=(0, 9), title="Fruit Counts")
p.vbar(x='fruits', top='counts', width=0.9, color='color', legend="fruits", source=source)
p.xgrid.grid_line_color = None
p.legend.orientation = "horizontal"
p.legend.location = "top_center"
show(p)
This I tried to replicate with my own dataset.
from bokeh.models import ColumnDataSource
from bokeh.palettes import Spectral6
source = ColumnDataSource(top_ten_start)
p = figure(x_range='Bank_name', plot_height=250, y_range=(0, 90), title="BAnks")
p.vbar(x='Bank_name', top='Tier_1_ratio', width=0.9, legend="test", source=source)
p.xgrid.grid_line_color = None
p.legend.orientation = "horizontal"
p.legend.location = "top_center"
show(p)
I expected to see a bar chart as shown on the tutorial but nothing is plotting.
I thought by replacing the input of the "x_range", "plot" and "x" it would be enough to work.
Perhaps the following information would help:
These are the dtypes:
Country_code object
Bank_name object
Tier_1_ratio float64
dtype: object
x_range expects a list of categorical values but you supplied a string. This would be okay if it was a glyph and you were using a source, but this is not a glyph. I changed this variable to source.data['Bank_name'] so it uses the bank names in your ColumnDataSource.
from bokeh.models import ColumnDataSource
from bokeh.plotting import figure, show
from bokeh.palettes import Spectral7
import pandas as pd
top_ten_start = pd.read_csv('top_ten_start.csv')
top_ten_start['color'] = Spectral7
source = ColumnDataSource(top_ten_start)
p = figure(x_range=source.data['Bank_name'], plot_height=750, y_range=(0, 90), title="Banks")
p.vbar(x='Bank_name', top='Tier_1_ratio', width=0.9, legend='Bank_name', source=source, color='color')
p.xgrid.grid_line_color = None
p.xaxis.major_label_orientation = 45
show(p)

how use bokeh vbar chart parameter with groupby object?

Question
Below code is grouped vbar chart example from bokeh documentation.
There are something i can't understand on this example.
Where 'cyl_mfr' is come from in factor_cmap() and vbar()?
'mpg_mean' , is it calculating the mean of 'mpg' column? if then,
why 'mpg_sum' doesn't work?
I want to make my own vbar chart like this example.
Code
from bokeh.io import show, output_file
from bokeh.models import ColumnDataSource, HoverTool
from bokeh.plotting import figure
from bokeh.palettes import Spectral5
from bokeh.sampledata.autompg import autompg_clean as df
from bokeh.transform import factor_cmap
output_file("bars.html")
df.cyl = df.cyl.astype(str)
df.yr = df.yr.astype(str)
group = df.groupby(('cyl', 'mfr'))
source = ColumnDataSource(group)
index_cmap = factor_cmap('cyl_mfr', palette=Spectral5,
factors=sorted(df.cyl.unique()), end=1)
p = figure(plot_width=800, plot_height=300, title="Mean MPG by # Cylinders
and Manufacturer",
x_range=group, toolbar_location=None, tools="")
p.vbar(x='cyl_mfr', top='mpg_mean', width=1, source=source,
line_color="white", fill_color=index_cmap, )
p.y_range.start = 0
p.x_range.range_padding = 0.05
p.xgrid.grid_line_color = None
p.xaxis.axis_label = "Manufacturer grouped by # Cylinders"
p.xaxis.major_label_orientation = 1.2
p.outline_line_color = None
p.add_tools(HoverTool(tooltips=[("MPG", "#mpg_mean"), ("Cyl, Mfr",
"#cyl_mfr")]))
show(p)
The group = df.groupby(('cyl', 'mfr')) makes a <pandas.core.groupby.DataFrameGroupBy object at 0x0xxx>. If you pass this to a ColumnDataSource, bokeh does a lot of magic, and calculates a lot of statistics already
df.columns
Index(['mpg', 'cyl', 'displ', 'hp', 'weight', 'accel', 'yr', 'origin', 'name', 'mfr'],
source.column_names
['accel_count', 'accel_mean', 'accel_std', 'accel_min',
'accel_25%', 'accel_50%', 'accel_75%', 'accel_max', 'displ_count',
'displ_mean', 'displ_std', 'displ_min', 'displ_25%', 'displ_50%',
'displ_75%', 'displ_max', 'hp_count', 'hp_mean', 'hp_std',
'hp_min', 'hp_25%', 'hp_50%', 'hp_75%', 'hp_max', 'mpg_count',
'mpg_mean', 'mpg_std', 'mpg_min', 'mpg_25%', 'mpg_50%',
'mpg_75%', 'mpg_max', 'weight_count', 'weight_mean', 'weight_std',
'weight_min', 'weight_25%', 'weight_50%', 'weight_75%',
'weight_max', 'yr_count', 'yr_mean', 'yr_std', 'yr_min',
'yr_25%', 'yr_50%', 'yr_75%', 'yr_max', 'cyl_mfr']
the cyl_mfr is the labels of the 2 columns on which you grouped by concatenated. In source this has become a column of tuples
mpg_sum is not calculated. If you cant the sum, you will need to calculate that yourself.

Categories

Resources