Hierarchical Columns in Numpy - python

I'm new to Pandas and trying to recreate the following dataframe, such that values in columns A and B contain random numbers 0 through 8. However, I keep getting "ValueError: all arrays must be same length". Can someone please review my code ? Thank you!
DataFrame
df = pd.DataFrame(np.random.randint(0, high=9),index = [[1, 2, 3], ['a', 'b']],
columns = ['A', 'B'])

Since there are two layers to the index, you have to create a multi index:
df = pd.DataFrame(
np.random.randint(9, size=(6, 2)),
index=pd.MultiIndex.from_product([[1, 2, 3], ['a', 'b']]),
columns=['A', 'B']
)
output:
A B
1 a 1 0
b 4 3
2 a 7 3
b 1 6
3 a 5 4
b 3 3

Related

How to concatenate a pandas column by a partition?

I have a pandas data frame like this:
df = pd.DataFrame({"Id": [1, 1, 1, 2, 2, 2, 2],
"Letter": ['A', 'B', 'C', 'A', 'D', 'B', 'C']})
How can I add a new column efficiently, "Merge" such that it concatenates all the values from the column "letter" by "Id", so the final data frame would look like this:
You can groupby Id column then transform
df['Merge'] = df.groupby('Id').transform(lambda x: '-'.join(x))
print(df)
Id Letter Merge
0 1 A A-B-C
1 1 B A-B-C
2 1 C A-B-C
3 2 A A-D-B-C
4 2 D A-D-B-C
5 2 B A-D-B-C
6 2 C A-D-B-C
Thanks for sammywemmy pointing out lambda is needless here, so you can use a simpler form
df['Merge'] = df.groupby('Id').transform('-'.join)

Aggregate contents of a column based on the range of values in another column in Pandas

I am working on aggregating the contents of a dataframe based on the range of values in a given column. My df looks like given below:
min max names
1 5 ['a','b']
0 5 ['d']
6 8 ['a','c']
3 4 ['e','a']
The output expected is
for min=0 and max=5, get the aggregated value, so the names value will be ['a','b','d','e','a']
for min=5 and max=10, get the aggregated value, the names value will be ['a','d']
Any help is appreciated.
The most intuitive approach would be to filter and then aggregate. To solve your specific problem, I would do this:
>> df = pd.DataFrame({"min": [1, 0, 6, 3],
"max": [5, 5, 8, 4],
"value": [['a','b'], ['d'], ['a','c'], ['e','a']]})
>> print(df)
min max value
0 1 5 [a, b]
1 0 5 [d]
2 6 8 [a, c]
3 3 4 [e, a]
>> sum_filtered_values = df[(df["max"]<=5) & (df["min"]>=0)].value.sum()
>> print(sum_filtered_values)
['a', 'b', 'd', 'e', 'a']
>> sum_filtered_values = df[(df["max"]<=10) & (df["min"]>=5)].value.sum()
>> print(sum_filtered_values)
['a', 'c']

Best way to add multiple list to existing dataframe [duplicate]

I'm trying to figure out how to add multiple columns to pandas simultaneously with Pandas. I would like to do this in one step rather than multiple repeated steps.
import pandas as pd
df = {'col_1': [0, 1, 2, 3],
'col_2': [4, 5, 6, 7]}
df = pd.DataFrame(df)
df[[ 'column_new_1', 'column_new_2','column_new_3']] = [np.nan, 'dogs',3] # I thought this would work here...
I would have expected your syntax to work too. The problem arises because when you create new columns with the column-list syntax (df[[new1, new2]] = ...), pandas requires that the right hand side be a DataFrame (note that it doesn't actually matter if the columns of the DataFrame have the same names as the columns you are creating).
Your syntax works fine for assigning scalar values to existing columns, and pandas is also happy to assign scalar values to a new column using the single-column syntax (df[new1] = ...). So the solution is either to convert this into several single-column assignments, or create a suitable DataFrame for the right-hand side.
Here are several approaches that will work:
import pandas as pd
import numpy as np
df = pd.DataFrame({
'col_1': [0, 1, 2, 3],
'col_2': [4, 5, 6, 7]
})
Then one of the following:
1) Three assignments in one, using list unpacking:
df['column_new_1'], df['column_new_2'], df['column_new_3'] = [np.nan, 'dogs', 3]
2) DataFrame conveniently expands a single row to match the index, so you can do this:
df[['column_new_1', 'column_new_2', 'column_new_3']] = pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index)
3) Make a temporary data frame with new columns, then combine with the original data frame later:
df = pd.concat(
[
df,
pd.DataFrame(
[[np.nan, 'dogs', 3]],
index=df.index,
columns=['column_new_1', 'column_new_2', 'column_new_3']
)
], axis=1
)
4) Similar to the previous, but using join instead of concat (may be less efficient):
df = df.join(pd.DataFrame(
[[np.nan, 'dogs', 3]],
index=df.index,
columns=['column_new_1', 'column_new_2', 'column_new_3']
))
5) Using a dict is a more "natural" way to create the new data frame than the previous two, but the new columns will be sorted alphabetically (at least before Python 3.6 or 3.7):
df = df.join(pd.DataFrame(
{
'column_new_1': np.nan,
'column_new_2': 'dogs',
'column_new_3': 3
}, index=df.index
))
6) Use .assign() with multiple column arguments.
I like this variant on #zero's answer a lot, but like the previous one, the new columns will always be sorted alphabetically, at least with early versions of Python:
df = df.assign(column_new_1=np.nan, column_new_2='dogs', column_new_3=3)
7) This is interesting (based on https://stackoverflow.com/a/44951376/3830997), but I don't know when it would be worth the trouble:
new_cols = ['column_new_1', 'column_new_2', 'column_new_3']
new_vals = [np.nan, 'dogs', 3]
df = df.reindex(columns=df.columns.tolist() + new_cols) # add empty cols
df[new_cols] = new_vals # multi-column assignment works for existing cols
8) In the end it's hard to beat three separate assignments:
df['column_new_1'] = np.nan
df['column_new_2'] = 'dogs'
df['column_new_3'] = 3
Note: many of these options have already been covered in other answers: Add multiple columns to DataFrame and set them equal to an existing column, Is it possible to add several columns at once to a pandas DataFrame?, Add multiple empty columns to pandas DataFrame
You could use assign with a dict of column names and values.
In [1069]: df.assign(**{'col_new_1': np.nan, 'col2_new_2': 'dogs', 'col3_new_3': 3})
Out[1069]:
col_1 col_2 col2_new_2 col3_new_3 col_new_1
0 0 4 dogs 3 NaN
1 1 5 dogs 3 NaN
2 2 6 dogs 3 NaN
3 3 7 dogs 3 NaN
My goal when writing Pandas is to write efficient readable code that I can chain. I won't go into why I like chaining so much here, I expound on that in my book, Effective Pandas.
I often want to add new columns in a succinct manner that also allows me to chain. My general rule is that I update or create columns using the .assign method.
To answer your question, I would use the following code:
(df
.assign(column_new_1=np.nan,
column_new_2='dogs',
column_new_3=3
)
)
To go a little further. I often have a dataframe that has new columns that I want to add to my dataframe. Let's assume it looks like say... a dataframe with the three columns you want:
df2 = pd.DataFrame({'column_new_1': np.nan,
'column_new_2': 'dogs',
'column_new_3': 3},
index=df.index
)
In this case I would write the following code:
(df
.assign(**df2)
)
With the use of concat:
In [128]: df
Out[128]:
col_1 col_2
0 0 4
1 1 5
2 2 6
3 3 7
In [129]: pd.concat([df, pd.DataFrame(columns = [ 'column_new_1', 'column_new_2','column_new_3'])])
Out[129]:
col_1 col_2 column_new_1 column_new_2 column_new_3
0 0.0 4.0 NaN NaN NaN
1 1.0 5.0 NaN NaN NaN
2 2.0 6.0 NaN NaN NaN
3 3.0 7.0 NaN NaN NaN
Not very sure of what you wanted to do with [np.nan, 'dogs',3]. Maybe now set them as default values?
In [142]: df1 = pd.concat([df, pd.DataFrame(columns = [ 'column_new_1', 'column_new_2','column_new_3'])])
In [143]: df1[[ 'column_new_1', 'column_new_2','column_new_3']] = [np.nan, 'dogs', 3]
In [144]: df1
Out[144]:
col_1 col_2 column_new_1 column_new_2 column_new_3
0 0.0 4.0 NaN dogs 3
1 1.0 5.0 NaN dogs 3
2 2.0 6.0 NaN dogs 3
3 3.0 7.0 NaN dogs 3
Dictionary mapping with .assign():
This is the most readable and dynamic way to assign new column(s) with value(s) when working with many of them.
import pandas as pd
import numpy as np
new_cols = ["column_new_1", "column_new_2", "column_new_3"]
new_vals = [np.nan, "dogs", 3]
# Map new columns as keys and new values as values
col_val_mapping = dict(zip(new_cols, new_vals))
# Unpack new column/new value pairs and assign them to the data frame
df = df.assign(**col_val_mapping)
If you're just trying to initialize the new column values to be empty as you either don't know what the values are going to be or you have many new columns.
import pandas as pd
import numpy as np
new_cols = ["column_new_1", "column_new_2", "column_new_3"]
new_vals = [None for item in new_cols]
# Map new columns as keys and new values as values
col_val_mapping = dict(zip(new_cols, new_vals))
# Unpack new column/new value pairs and assign them to the data frame
df = df.assign(**col_val_mapping)
use of list comprehension, pd.DataFrame and pd.concat
pd.concat(
[
df,
pd.DataFrame(
[[np.nan, 'dogs', 3] for _ in range(df.shape[0])],
df.index, ['column_new_1', 'column_new_2','column_new_3']
)
], axis=1)
if adding a lot of missing columns (a, b, c ,....) with the same value, here 0, i did this:
new_cols = ["a", "b", "c" ]
df[new_cols] = pd.DataFrame([[0] * len(new_cols)], index=df.index)
It's based on the second variant of the accepted answer.
Just want to point out that option2 in #Matthias Fripp's answer
(2) I wouldn't necessarily expect DataFrame to work this way, but it does
df[['column_new_1', 'column_new_2', 'column_new_3']] = pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index)
is already documented in pandas' own documentation
http://pandas.pydata.org/pandas-docs/stable/indexing.html#basics
You can pass a list of columns to [] to select columns in that order.
If a column is not contained in the DataFrame, an exception will be raised.
Multiple columns can also be set in this manner.
You may find this useful for applying a transform (in-place) to a subset of the columns.
You can use tuple unpacking:
df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
df['col3'], df['col4'] = 'a', 10
Result:
col1 col2 col3 col4
0 1 3 a 10
1 2 4 a 10
If you just want to add empty new columns, reindex will do the job
df
col_1 col_2
0 0 4
1 1 5
2 2 6
3 3 7
df.reindex(list(df)+['column_new_1', 'column_new_2','column_new_3'], axis=1)
col_1 col_2 column_new_1 column_new_2 column_new_3
0 0 4 NaN NaN NaN
1 1 5 NaN NaN NaN
2 2 6 NaN NaN NaN
3 3 7 NaN NaN NaN
full code example
import numpy as np
import pandas as pd
df = {'col_1': [0, 1, 2, 3],
'col_2': [4, 5, 6, 7]}
df = pd.DataFrame(df)
print('df',df, sep='\n')
print()
df=df.reindex(list(df)+['column_new_1', 'column_new_2','column_new_3'], axis=1)
print('''df.reindex(list(df)+['column_new_1', 'column_new_2','column_new_3'], axis=1)''',df, sep='\n')
otherwise go for zeros answer with assign
I am not comfortable using "Index" and so on...could come up as below
df.columns
Index(['A123', 'B123'], dtype='object')
df=pd.concat([df,pd.DataFrame(columns=list('CDE'))])
df.rename(columns={
'C':'C123',
'D':'D123',
'E':'E123'
},inplace=True)
df.columns
Index(['A123', 'B123', 'C123', 'D123', 'E123'], dtype='object')
You could instantiate the values from a dictionary if you wanted different values for each column & you don't mind making a dictionary on the line before.
>>> import pandas as pd
>>> import numpy as np
>>> df = pd.DataFrame({
'col_1': [0, 1, 2, 3],
'col_2': [4, 5, 6, 7]
})
>>> df
col_1 col_2
0 0 4
1 1 5
2 2 6
3 3 7
>>> cols = {
'column_new_1':np.nan,
'column_new_2':'dogs',
'column_new_3': 3
}
>>> df[list(cols)] = pd.DataFrame(data={k:[v]*len(df) for k,v in cols.items()})
>>> df
col_1 col_2 column_new_1 column_new_2 column_new_3
0 0 4 NaN dogs 3
1 1 5 NaN dogs 3
2 2 6 NaN dogs 3
3 3 7 NaN dogs 3
Not necessarily better than the accepted answer, but it's another approach not yet listed.
import pandas as pd
df = pd.DataFrame({
'col_1': [0, 1, 2, 3],
'col_2': [4, 5, 6, 7]
})
df['col_3'], df['col_4'] = [df.col_1]*2
>> df
col_1 col_2 col_3 col_4
0 4 0 0
1 5 1 1
2 6 2 2
3 7 3 3

Get a subset of data from one row of Dataframe

Let's say I have a dataframe df with columns 'A', 'B', 'C'
Now I just want to extract row 2 of df and only columns 'B' and 'C'. What is the most efficient way to do that?
Can you please tell me why df.ix[2, ['B', 'C']] didn't work?
Thank you!
Consider the dataframe df
df = pd.DataFrame(np.arange(9).reshape(3, 3), list('xyz'), list('ABC'))
df
A B C
x 0 1 2
y 3 4 5
z 6 7 8
If you want to maintain a dataframe
df.loc[df.index[[1]], ['B', 'C']]
B C
y 4 5
If you want a series
df.loc[df.index[1], ['B', 'C']]
B 4
C 5
Name: y, dtype: int64
row_2 = df[['B', 'C']].iloc[1]
OR
# Convert column to 2xN vector, grab row 2
row_2 = list(df[['B', 'C']].apply(tuple, axis=1))[1]

Multiple filters Python Data.frame

I'm pretty new to python. I'm trying to filter rows in a data.frame as I do in R.
sub_df = df[df[main_id]==3]
works, but
df[df[main_id] in [3,7]]
gives me error
"The truth value of a Series is ambiguous"
Can you please suggest me a correct syntax to write similar selections?
You can use pandas isin function. This would look like this:
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
df[df['A'].isin([2, 3])]
giving:
A B
1 2 b
2 3 f
df[df[main_id].apply(lambda x: x in [3, 7])]
yet another solution:
In [60]: df = pd.DataFrame({'main_id': [0,1, 2, 3], 'x': list('ABCD')})
In [61]: df
Out[61]:
main_id x
0 0 A
1 1 B
2 2 C
3 3 D
In [62]: df.query("main_id in [0,3]")
Out[62]:
main_id x
0 0 A
3 3 D

Categories

Resources