Draw grid on a gridless (fully or partially) table image - python

I have an image that contains a table, the table can be in many sizes and the image too, and the table can be fully gridded (with only some blank spot that needs to be filled), it can be with only vertical grid lines and can be only with horizontal grid lines.
I've searched the web for a long time and found no solution that worked for me.
I found the following questions that seem to be suitable for me:
Python & OpenCV: How to add lines to the gridless table
Draw a line on a gridless image Python Opencv
How to repair incomplete grid cells and fix missing sections in image
Python & OpenCV: How to crop half-formed bounding boxes
My code is taken from the answers to the above questions and the "best" result I got from the above question codes is that it drew 2 lines one at the rightmost part and one on the leftmost part.
I'm kind of new to OpenCV and the image processing field so I am not sure how can I fix the above questions codes to suit my needs or how to accomplish my needs exactly, I would appreciate any help you can provide.
Example of an image table:
Update:
To remove the horizontal lines I use exactly the code you can find in here, but the result I get on the example image is this:
as you can see it removed most of them but not all of them, and then when I try to apply the same for the vertical ones (I tried the same code with rotation, or flipping the kernel) it does not work at all...
I also tried this code but it didn't work at all also.
Update 2:
I was able to remove the lines using this code:
def removeLines(result, axis) -> np.ndarray:
img = result.copy()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
if axis == "horizontal":
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 25))
elif axis == "vertical":
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 1))
else:
raise ValueError("Axis must be either 'horizontal' or 'vertical'")
detected_lines = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)
cnts = cv2.findContours(detected_lines, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
result = img.copy()
for c in cnts:
cv2.drawContours(result, [c], -1, (255, 255, 255), 2)
return result
gridless = removeLines(removeLines(cv2.imread(image_path), 'horizontal'), 'vertical')
Result:
Problem:
After I remove lines, when I try to draw the vertical lines using this code:
# read image
img = old_image.copy() # cv2.imread(image_path1)
hh, ww = img.shape[:2]
# convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# average gray image to one column
column = cv2.resize(gray, (ww,1), interpolation = cv2.INTER_AREA)
# threshold on white
thresh = cv2.threshold(column, 248, 255, cv2.THRESH_BINARY)[1]
# get contours
contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
# Draw vertical
for cntr in contours_v:
x,y,w,h = cv2.boundingRect(cntr)
xcenter = x+w//2
cv2.line(original_image, (xcenter,0), (xcenter,hh-1), (0, 0, 0), 1)
I get this result:
Update 3:
when I try even thresh = cv2.threshold(column, 254, 255, cv2.THRESH_BINARY)[1] (I tried lowering it 1 by 1 until 245, for both the max value and the threshold value, each time I get a different or similar result but always too much lines or too less lines) I get the following:
Input:
Output:
It's putting too many lines instead of just 1 line in each column
Code:
# read image
img = old_image.copy() # cv2.imread(image_path1)
hh, ww = img.shape[:2]
# convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# average gray image to one column
column = cv2.resize(gray, (ww, 1), interpolation = cv2.INTER_AREA)
# threshold on white
thresh = cv2.threshold(column, 254, 255, cv2.THRESH_BINARY)[1]
# get contours
contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
for cntr in contours:
x, y, w, h = cv2.boundingRect(cntr)
xcenter = x + w // 2
cv2.line(original_image, (xcenter,0), (xcenter, hh_-1), (0, 0, 0), 1)

Here is one way to get the lines in Python/OpenCV. Average the image down to 1 column. Then threshold and get the contours. Then get the bounding boxes and find the vertical centers. Draw lines at those places.
If you do not want the extra lines, crop your image first to get the inside of the table.
Input:
import cv2
import numpy as np
# read image
img = cv2.imread("table4.png")
hh, ww = img.shape[:2]
# convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# average gray image to one column
column = cv2.resize(gray, (1,hh), interpolation = cv2.INTER_AREA)
# threshold on white
thresh = cv2.threshold(column, 248, 255, cv2.THRESH_BINARY)[1]
# get contours
contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
# loop over contours and get bounding boxes and ycenter and draw horizontal line at ycenter
result = img.copy()
for cntr in contours:
x,y,w,h = cv2.boundingRect(cntr)
ycenter = y+h//2
cv2.line(result, (0,ycenter), (ww-1,ycenter), (0, 0, 255), 1)
# write results
cv2.imwrite("table4_lines3.png", result)
# display results
cv2.imshow("RESULT", result)
cv2.waitKey(0)
Result:

You wrote that you tried to remove the lines using the code, but it did not work.
It works fine for me in Python/OpenCV.
Read the input
Convert to grayscale
Threshold to show the horizontal lines
Apply morphology open with a horizontal kernel to isolate the horizontal lines
Get their contours
Draw the contours on a copy of the input as white to cover over the black horizontal lines
Save the results
Input:
import cv2
import numpy as np
# read the input
img = cv2.imread('table4.png')
# convert to grayscale
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# threshold
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
# do morphology to detect lines
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25,1))
detected_lines = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, horizontal_kernel, iterations=2)
# get contours
cnts = cv2.findContours(detected_lines, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
# draw contours as white on copy of input
result = img.copy()
for c in cnts:
cv2.drawContours(result, [c], -1, (255,255,255), 2)
# save results
cv2.imwrite('table4_horizontal_lines_threshold.png', thresh)
cv2.imwrite('table4_horizontal_lines_detected.png', detected_lines)
cv2.imwrite('table4_horizontal_lines_removed.png', result)
# show results
cv2.imshow('thresh', thresh)
cv2.imshow('morphology', detected_lines)
cv2.imshow('result', result)
cv2.waitKey(0)
Threshold Image:
Morphology Detected Lines Image:
Result:

Related

Python & OpenCV: How to add lines to gridless table

I have the following table:
I want to write a script that creates lines based on the natural breakages on the table text. The result would look like this:
Is there an OpenCV implementation that makes drawing these lines possible? I looked at the answers to the questions here and here, but neither worked. What is the best approach to solving this problem?
Here is one way to get the horizontal lines in Python/OpenCV by counting the number of white pixels in each row of the image to find their center y values. The vertical lines can be added by a similar process.
Input:
import cv2
import numpy as np
# read image
img = cv2.imread("table.png")
hh, ww = img.shape[:2]
# convert to grayscale
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# threshold gray image
thresh = cv2.threshold(gray, 254, 255, cv2.THRESH_BINARY)[1]
# count number of non-zero pixels in each row
count = np.count_nonzero(thresh, axis=1)
# threshold count at ww (width of image)
count_thresh = count.copy()
count_thresh[count==ww] = 255
count_thresh[count<ww] = 0
count_thresh = count_thresh.astype(np.uint8)
# get contours
contours = cv2.findContours(count_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
# loop over contours and get bounding boxes and ycenter and draw horizontal line at ycenter
result = img.copy()
for cntr in contours:
x,y,w,h = cv2.boundingRect(cntr)
ycenter = y+h//2
cv2.line(result, (0,ycenter), (ww-1,ycenter), (0, 0, 0), 2)
# write results
cv2.imwrite("table_thresh.png", thresh)
cv2.imwrite("table_lines.png", result)
# display results
cv2.imshow("THRESHOLD", thresh)
cv2.imshow("RESULT", result)
cv2.waitKey(0)
Threshold Image:
Result with lines:
ADDITION
Here is an alternate method that is slightly simpler. It averages the image down to one column rather than counting white pixels.
import cv2
import numpy as np
# read image
img = cv2.imread("table.png")
hh, ww = img.shape[:2]
# convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# average gray image to one column
column = cv2.resize(gray, (1,hh), interpolation = cv2.INTER_AREA)
# threshold on white
thresh = cv2.threshold(column, 254, 255, cv2.THRESH_BINARY)[1]
# get contours
contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
# loop over contours and get bounding boxes and ycenter and draw horizontal line at ycenter
result = img.copy()
for cntr in contours:
x,y,w,h = cv2.boundingRect(cntr)
ycenter = y+h//2
cv2.line(result, (0,ycenter), (ww-1,ycenter), (0, 0, 0), 2)
# write results
cv2.imwrite("table_lines2.png", result)
# display results
cv2.imshow("RESULT", result)
cv2.waitKey(0)
Result:

How to get rectangular box contours when there are overlapping distractions using OpenCV

I pieced together a quick algorithm in python to get the input boxes from a handwritten invoice.
# some preprocessing
img = np.copy(orig_img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
img = cv2.GaussianBlur(img,(5,5),0)
_, img = cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
# get contours
contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for i, cnt in enumerate(contours):
approx = cv2.approxPolyDP(cnt, 0.01*cv2.arcLength(cnt,True), True)
if len(approx) == 4:
cv2.drawContours(orig_img, contours, i, (0, 255, 0), 2)
It fails to get the 2nd one in this example because the handwriting crosses the box boundary.
Note that this picture could be taken with a mobile phone, so aspect ratios may be a little funny.
So, what are some neat recipes to get around my problem?
And as a bonus. These boxes are from an A4 page with a lot of other stuff going on. Would you recommend a whole different approach to getting the handwritten numbers out?
EDIT
This might be interesting. If I don't filter for 4 sided polys, I get the contours but they go all around the hand-drawn digit. Maybe there's a way to make contours have water-like cohesion so that they pinch off when they get close to themselves?
FURTHER EDIT
Here is the original image without bounding boxes drawn on
Here's a potential solution:
Obtain binary image. We load the image, convert to grayscale, apply a Gaussian blur, and then Otsu's threshold
Detect horizontal lines. We create a horizontal kernel and draw detected horizontal lines onto a mask
Detect vertical lines. We create a vertical kernel and draw detected vertical lines onto a mask
Perform morphological opening. We create a rectangular kernel and perform morph opening to smooth out noise and separate any connected contours
Find contours, draw rectangle, and extract ROI. We find contours and draw the bounding rectangle onto the image
Here's a visualization of each step:
Binary image
Detected horizontal and vertical lines drawn onto a mask
Morphological opening
Result
Individual extracted saved ROI
Note: To extract only the hand written numbers/letters out of each ROI, take a look at a previous answer in Remove borders from image but keep text written on borders (preprocessing before OCR)
Code
import cv2
import numpy as np
# Load image, grayscale, blur, Otsu's threshold
image = cv2.imread('1.png')
original = image.copy()
mask = np.zeros(image.shape, dtype=np.uint8)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5,5), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
# Find horizontal lines
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (50,1))
detect_horizontal = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, horizontal_kernel, iterations=2)
cnts = cv2.findContours(detect_horizontal, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
cv2.drawContours(mask, [c], -1, (255,255,255), 3)
# Find vertical lines
vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,50))
detect_vertical = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, vertical_kernel, iterations=2)
cnts = cv2.findContours(detect_vertical, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
cv2.drawContours(mask, [c], -1, (255,255,255), 3)
# Morph open
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7,7))
opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=1)
# Draw rectangle and save each ROI
number = 0
cnts = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
x,y,w,h = cv2.boundingRect(c)
cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 2)
ROI = original[y:y+h, x:x+w]
cv2.imwrite('ROI_{}.png'.format(number), ROI)
number += 1
cv2.imshow('thresh', thresh)
cv2.imshow('mask', mask)
cv2.imshow('opening', opening)
cv2.imshow('image', image)
cv2.waitKey()
Since the squares have a quite straight lines, it's good to use Hough transform:
1- Make the image grayscale, then do an Otsu threshold on it, then reverse the binary image
2- Do Hough transform (HoughLinesP) and draw the lines on a new image
3- With findContours and drawContours, make the 3 roi clean
4- Erode the final image a little to make the boxes neater
I wrote the code in C++, it's easily convertible to python:
Mat img = imread("D:/1.jpg", 0);
threshold(img, img, 0, 255, THRESH_OTSU);
imshow("Binary image", img);
img = 255 - img;
imshow("Reversed binary image", img);
Mat img_1 = Mat::zeros(img.size(), CV_8U);
Mat img_2 = Mat::zeros(img.size(), CV_8U);
vector<Vec4i> lines;
HoughLinesP(img, lines, 1, 0.1, 95, 10, 1);
for (size_t i = 0; i < lines.size(); i++)
line(img_1, Point(lines[i][0], lines[i][1]), Point(lines[i][2], lines[i][3]),
Scalar(255, 255, 255), 2, 8);
imshow("Hough Lines", img_1);
vector<vector<Point>> contours;
findContours(img_1,contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);
for (int i = 0; i< contours.size(); i++)
drawContours(img_2, contours, i, Scalar(255, 255, 255), -1);
imshow("final result after drawcontours", img_2); waitKey(0);
Thank you to those who shared solutions. I ended up taking a slightly different path in the end.
Grayscale, Gaussian Blur, Otsu threshold
Get contours
Filter contours by aspect ratio and extent
Return the minimum upright bounding box of the contour.
Remove any bounding boxes that encapsulate smaller bounding boxes (because you get two boxes, one for the inside contour, and one for the outside).
Here's the code if anyone's interested (except for step 5 - that was just basic numpy manipulation)
orig_img = cv2.imread('example0.jpg')
img = np.copy(orig_img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
img = cv2.GaussianBlur(img,(5,5),0)
_, img = cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
boxes = list()
for i, cnt in enumerate(contours):
x,y,w,h = cv2.boundingRect(cnt)
aspect_ratio = float(w)/h
area = cv2.contourArea(cnt)
rect_area = w*h
extent = float(area)/rect_area
if abs(aspect_ratio - 1) < 0.1 and extent > 0.7:
boxes.append((x,y,w,h))
And here's an example of what came out when cutting out the boundary boxes from the original image.

How to remove noise artifacts from an image for OCR with Python OpenCV?

I have subsets of images that contains digits. Each subset is read by Tesseract for OCR. Unfortunately for some images the cropping from the original image isn't optimal.
Hence some artifacts/remains at the top and bottom of the image and hamper Tesseract to recognize characters on the image. Then I would like to get rid of these artifacts and get to a similar result:
First I considered a simple approach: I set the first row of pixels as the reference: if an artifact was found along the x-axis (i.e., a white pixel if the image is binarized), I removed it along the y-axis until the next black pixel. Code for this approach is the one below:
import cv2
inp = cv2.imread("testing_file.tif")
inp = cv2.cvtColor(inp, cv2.COLOR_BGR2GRAY)
_,inp = cv2.threshold(inp, 150, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
ax = inp.shape[1]
ay = inp.shape[0]
out = inp.copy()
for i in range(ax):
j = 0
while j in range(ay):
if out[j,i] == 255:
out[j,i] = 0
else:
break
j+=1
out = cv2.bitwise_not(out)
cv2.imwrite('output.png',out)
But the result isn't good at all:
Then I stumbled across the flood_fill function from scipy (here) but found out it was too much time consuming and still not efficient. A similar question was asked on SO here but didn't help so much. Maybe a k-nearest neighbor approach could be considered? I also found out that methods that consist in merging neighbors pixels under some criteria were called growing methods, among which the single linkage is the most common (here).
What would you recommend to remove the upper and lower artifacts?
Here's a simple approach:
Convert image to grayscale
Otsu's threshold to obtain binary image
Cerate special horizontal kernel and dilate
Detect horizontal lines, sort for largest contour, and draw onto mask
Bitwise-and
After converting to grayscale, we Otsu's threshold to get a binary image
# Read in image, convert to grayscale, and Otsu's threshold
image = cv2.imread('1.png')
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
Next we create a long horizontal kernel and dilate to connect the numbers together
# Create special horizontal kernel and dilate
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (70,1))
dilate = cv2.dilate(thresh, horizontal_kernel, iterations=1)
From here we detect horizontal lines and sort for the largest contour. The idea is that the largest contour will be the middle section of the numbers where the numbers are all "complete". Any smaller contours will be partial or cut off numbers so we filter them out here. We draw this largest contour onto a mask
# Detect horizontal lines, sort for largest contour, and draw on mask
mask = np.zeros(image.shape, dtype=np.uint8)
detected_lines = cv2.morphologyEx(dilate, cv2.MORPH_OPEN, horizontal_kernel, iterations=1)
cnts = cv2.findContours(detected_lines, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
for c in cnts:
cv2.drawContours(mask, [c], -1, (255,255,255), -1)
break
Now that we have the outline of the desired numbers, we simply bitwise-and with our original image and color the background white to get our result
# Bitwise-and to get result and color background white
mask = cv2.cvtColor(mask,cv2.COLOR_BGR2GRAY)
result = cv2.bitwise_and(image,image,mask=mask)
result[mask==0] = (255,255,255)
Full code for completeness
import cv2
import numpy as np
# Read in image, convert to grayscale, and Otsu's threshold
image = cv2.imread('1.png')
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
# Create special horizontal kernel and dilate
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (70,1))
dilate = cv2.dilate(thresh, horizontal_kernel, iterations=1)
# Detect horizontal lines, sort for largest contour, and draw on mask
mask = np.zeros(image.shape, dtype=np.uint8)
detected_lines = cv2.morphologyEx(dilate, cv2.MORPH_OPEN, horizontal_kernel, iterations=1)
cnts = cv2.findContours(detected_lines, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
for c in cnts:
cv2.drawContours(mask, [c], -1, (255,255,255), -1)
break
# Bitwise-and to get result and color background white
mask = cv2.cvtColor(mask,cv2.COLOR_BGR2GRAY)
result = cv2.bitwise_and(image,image,mask=mask)
result[mask==0] = (255,255,255)
cv2.imshow('thresh', thresh)
cv2.imshow('dilate', dilate)
cv2.imshow('result', result)
cv2.waitKey()

How can i remove everything on an image except for the text in python?

I have an image with measurements that I need to read with python and right now it reads the most text but not all because some lines are in the way. I cant use the original image so I made an image that looks like the one I'm using.
def erode(img):
kernel = np.ones((3,3), np.uint8)
eroded = cv2.erode(img, kernel, iterations=1)
gray = cv2.cvtColor(eroded,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray,50,150,apertureSize = 3)
minLineLength = 10
maxLineGap = 1
lines = cv2.HoughLinesP(edges,1,np.pi/180,120,minLineLength,maxLineGap)
for line in lines:
for x1,y1,x2,y2 in line:
cv2.line(eroded,(x1,y1),(x2,y2),(255,255,255),7)
I have tried using the OpenCV function houghLinesP and drawing a line over these but this doesn't remove all lines and still leaves some dots all over the place like this:
what I want is to give something like this as input:
and get something like this as an output:
the reason I need to remove all the lines but not change the
text is because I need to save the text coordinates.
The idea is to dilate and connect the text together to form a single contour. From here we can find contours and filter using a minimum threshold area. If it passes this filter then we have a desired text ROI to keep and we draw this ROI onto a mask
import cv2
import numpy as np
image = cv2.imread('3.png')
mask = np.ones(image.shape, dtype=np.uint8) * 255
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
dilate = cv2.dilate(thresh, kernel, iterations=3)
cnts = cv2.findContours(dilate, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
area = cv2.contourArea(c)
if area < 5000:
x,y,w,h = cv2.boundingRect(c)
mask[y:y+h, x:x+w] = image[y:y+h, x:x+w]
cv2.imshow('thresh', thresh)
cv2.imshow('dilate', dilate)
cv2.imshow('mask', mask)
cv2.waitKey()

Detecting vertical lines using Hough transforms in opencv

I'm trying to remove the square boxes(vertical and horizontal lines) using Hough transform in opencv (Python). The problem is none of the vertical lines are being detected. I've tried looking through contours and hierarchy but there are too many contours in this image and I'm confused how to use them.
After looking through related posts, I've played with the threshold and rho parameters but that didn't help.
I've attached the code for more details. Why does Hough transform not find the vertical lines in the image?. Any suggestions in solving this task are welcome. Thanks.
Input Image :
Hough transformed Image:
Drawing contours:
import cv2
import numpy as np
import pdb
img = cv2.imread('/home/user/Downloads/cropped/robust_blaze_cpp-300-0000046A-02-HW.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 140, 255, 0)
im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img, contours, -1, (0,0,255), 2)
edges = cv2.Canny(gray,50,150,apertureSize = 3)
minLineLength = 5
maxLineGap = 100
lines = cv2.HoughLinesP(edges,rho=1,theta=np.pi/180,threshold=100,minLineLength=minLineLength,maxLineGap=maxLineGap)
for x1,y1,x2,y2 in lines[0]:
cv2.line(img,(x1,y1),(x2,y2),(0,255,0),2)
cv2.imwrite('probHough.jpg',img)
To be honest, rather than looking for the lines, I'd instead look for the white boxes.
Preparation
import cv2
import numpy as np
Load the image
img = cv2.imread("digitbox.jpg", 0)
Binarize it, so that both the boxes and the digits are black, rest is white
_, thresh = cv2.threshold(img, 200, 255, cv2.THRESH_BINARY)
cv2.imwrite('digitbox_step1.png', thresh)
Find contours. In this example image, it's fine to just look for external contours.
_, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
Process the contours, filtering out any with too small an area. Find convex hull of each contour, create a mask of all areas outside the contour. Store the bounding boxes of each found contour, sorted by x coordinate.
mask = np.ones_like(img) * 255
boxes = []
for contour in contours:
if cv2.contourArea(contour) > 100:
hull = cv2.convexHull(contour)
cv2.drawContours(mask, [hull], -1, 0, -1)
x,y,w,h = cv2.boundingRect(contour)
boxes.append((x,y,w,h))
boxes = sorted(boxes, key=lambda box: box[0])
cv2.imwrite('digitbox_step2.png', mask)
Dilate the mask (to shrink the black parts), to clip off any remains the the gray frames.
mask = cv2.dilate(mask, np.ones((5,5),np.uint8))
cv2.imwrite('digitbox_step3.png', mask)
Fill all the masked pixels with white, to erase the frames.
img[mask != 0] = 255
cv2.imwrite('digitbox_step4.png', img)
Process the digits as you desire -- i'll just draw the bounding boxes.
result = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
for n,box in enumerate(boxes):
x,y,w,h = box
cv2.rectangle(result,(x,y),(x+w,y+h),(255,0,0),2)
cv2.putText(result, str(n),(x+5,y+17), cv2.FONT_HERSHEY_SIMPLEX, 0.6,(255,0,0),2,cv2.LINE_AA)
cv2.imwrite('digitbox_step5.png', result)
The whole script in one piece:
import cv2
import numpy as np
img = cv2.imread("digitbox.jpg", 0)
_, thresh = cv2.threshold(img, 200, 255, cv2.THRESH_BINARY)
_, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
mask = np.ones_like(img) * 255
boxes = []
for contour in contours:
if cv2.contourArea(contour) > 100:
hull = cv2.convexHull(contour)
cv2.drawContours(mask, [hull], -1, 0, -1)
x,y,w,h = cv2.boundingRect(contour)
boxes.append((x,y,w,h))
boxes = sorted(boxes, key=lambda box: box[0])
mask = cv2.dilate(mask, np.ones((5,5),np.uint8))
img[mask != 0] = 255
result = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
for n,box in enumerate(boxes):
x,y,w,h = box
cv2.rectangle(result,(x,y),(x+w,y+h),(255,0,0),2)
cv2.putText(result, str(n),(x+5,y+17), cv2.FONT_HERSHEY_SIMPLEX, 0.6,(255,0,0),2,cv2.LINE_AA)
cv2.imwrite('digitbox_result.png', result)

Categories

Resources