Python floating point fractions printing in binary issue - python

I teach Python and showed my students how some decimal fractions in binary cannot be represented exactly
I showed the following Python program
INTEREST_RATE = .07
import struct
def binary(num):
return ''.join('{:0>8b}'.format(c) for c in struct.pack('!f',
num))
amount =10.00
interest = amount * INTEREST_RATE
roundInterest = round(interest,2)
print(interest,binary(interest))
print(roundInterest," ",binary(roundInterest))
print(.70,binary(.70))
if interest == .70:
print("not exact")
elif roundInterest == .70:
print("better")
my question is from the output below, how can the variable interest and roundInterest have different values when printed but the same internal binary representation? (I even used another function to print the binary - IEEE754 and got the same results). and yet with the if logic roundInterest amount compares exactly to .70 while the interest does not- I would assume something is different in the way the interest and roundInterest are stored:)
"0.7000000000000001 00111111001100110011001100110011"
"0.7 00111111001100110011001100110011"
"better"
I would expect the binary representation to be different for the rounded and unrounded amount.

Related

How can I check the length of a long float? Python is truncating the length [duplicate]

I have some number 0.0000002345E^-60. I want to print the floating point value as it is.
What is the way to do it?
print %f truncates it to 6 digits. Also %n.nf gives fixed numbers. What is the way to print without truncation.
Like this?
>>> print('{:.100f}'.format(0.0000002345E-60))
0.0000000000000000000000000000000000000000000000000000000000000000002344999999999999860343602938602754
As you might notice from the output, it’s not really that clear how you want to do it. Due to the float representation you lose precision and can’t really represent the number precisely. As such it’s not really clear where you want the number to stop displaying.
Also note that the exponential representation is often used to more explicitly show the number of significant digits the number has.
You could also use decimal to not lose the precision due to binary float truncation:
>>> from decimal import Decimal
>>> d = Decimal('0.0000002345E-60')
>>> p = abs(d.as_tuple().exponent)
>>> print(('{:.%df}' % p).format(d))
0.0000000000000000000000000000000000000000000000000000000000000000002345
You can use decimal.Decimal:
>>> from decimal import Decimal
>>> str(Decimal(0.0000002345e-60))
'2.344999999999999860343602938602754401109865640550232148836753621775217856801120686600683401464097113374472942165409862789978024748827516129306833728589548440037314681709534891496105046826414763927459716796875E-67'
This is the actual value of float created by literal 0.0000002345e-60. Its value is a number representable as python float which is closest to actual 0.0000002345 * 10**-60.
float should be generally used for approximate calculations. If you want accurate results you should use something else, like mentioned Decimal.
If I understand, you want to print a float?
The problem is, you cannot print a float.
You can only print a string representation of a float. So, in short, you cannot print a float, that is your answer.
If you accept that you need to print a string representation of a float, and your question is how specify your preferred format for the string representations of your floats, then judging by the comments you have been very unclear in your question.
If you would like to print the string representations of your floats in exponent notation, then the format specification language allows this:
{:g} or {:G}, depending whether or not you want the E in the output to be capitalized). This gets around the default precision for e and E types, which leads to unwanted trailing 0s in the part before the exponent symbol.
Assuming your value is my_float, "{:G}".format(my_float) would print the output the way that the Python interpreter prints it. You could probably just print the number without any formatting and get the same exact result.
If your goal is to print the string representation of the float with its current precision, in non-exponentiated form, User poke describes a good way to do this by casting the float to a Decimal object.
If, for some reason, you do not want to do this, you can do something like is mentioned in this answer. However, you should set 'max_digits' to sys.float_info.max_10_exp, instead of 14 used in the answer. This requires you to import sys at some point prior in the code.
A full example of this would be:
import math
import sys
def precision_and_scale(x):
max_digits = sys.float_info.max_10_exp
int_part = int(abs(x))
magnitude = 1 if int_part == 0 else int(math.log10(int_part)) + 1
if magnitude >= max_digits:
return (magnitude, 0)
frac_part = abs(x) - int_part
multiplier = 10 ** (max_digits - magnitude)
frac_digits = multiplier + int(multiplier * frac_part + 0.5)
while frac_digits % 10 == 0:
frac_digits /= 10
scale = int(math.log10(frac_digits))
return (magnitude + scale, scale)
f = 0.0000002345E^-60
p, s = precision_and_scale(f)
print "{:.{p}f}".format(f, p=p)
But I think the method involving casting to Decimal is probably better, overall.

Python 3.x rounding half up

I know that questions about rounding in python have been asked multiple times already, but the answers did not help me. I'm looking for a method that is rounding a float number half up and returns a float number. The method should also accept a parameter that defines the decimal place to round to. I wrote a method that implements this kind of rounding. However, I think it does not look elegant at all.
def round_half_up(number, dec_places):
s = str(number)
d = decimal.Decimal(s).quantize(
decimal.Decimal(10) ** -dec_places,
rounding=decimal.ROUND_HALF_UP)
return float(d)
I don't like it, that I have to convert float to a string (to avoid floating point inaccuracy) and then work with the decimal module.
Do you have any better solutions?
Edit: As pointed out in the answers below, the solution to my problem is not that obvious as correct rounding requires correct representation of numbers in the first place and this is not the case with float. So I would expect that the following code
def round_half_up(number, dec_places):
d = decimal.Decimal(number).quantize(
decimal.Decimal(10) ** -dec_places,
rounding=decimal.ROUND_HALF_UP)
return float(d)
(that differs from the code above just by the fact that the float number is directly converted into a decimal number and not to a string first) to return 2.18 when used like this: round_half_up(2.175, 2) But it doesn't because Decimal(2.175) will return Decimal('2.17499999999999982236431605997495353221893310546875'), the way the float number is represented by the computer.
Suprisingly, the first code returns 2.18 because the float number is converted to string first. It seems that the str() function conducts an implicit rounding to the number that was initially meant to be rounded. So there are two roundings taking place. Even though this is the result that I would expect, it is technically wrong.
Rounding is surprisingly hard to do right, because you have to handle floating-point calculations very carefully. If you are looking for an elegant solution (short, easy to understand), what you have like like a good starting point. To be correct, you should replace decimal.Decimal(str(number)) with creating the decimal from the number itself, which will give you a decimal version of its exact representation:
d = Decimal(number).quantize(...)...
Decimal(str(number)) effectively rounds twice, as formatting the float into the string representation performs its own rounding. This is because str(float value) won't try to print the full decimal representation of the float, it will only print enough digits to ensure that you get the same float back if you pass those exact digits to the float constructor.
If you want to retain correct rounding, but avoid depending on the big and complex decimal module, you can certainly do it, but you'll still need some way to implement the exact arithmetics needed for correct rounding. For example, you can use fractions:
import fractions, math
def round_half_up(number, dec_places=0):
sign = math.copysign(1, number)
number_exact = abs(fractions.Fraction(number))
shifted = number_exact * 10**dec_places
shifted_trunc = int(shifted)
if shifted - shifted_trunc >= fractions.Fraction(1, 2):
result = (shifted_trunc + 1) / 10**dec_places
else:
result = shifted_trunc / 10**dec_places
return sign * float(result)
assert round_half_up(1.49) == 1
assert round_half_up(1.5) == 2
assert round_half_up(1.51) == 2
assert round_half_up(2.49) == 2
assert round_half_up(2.5) == 3
assert round_half_up(2.51) == 3
Note that the only tricky part in the above code is the precise conversion of a floating-point to a fraction, and that can be off-loaded to the as_integer_ratio() float method, which is what both decimals and fractions do internally. So if you really want to remove the dependency on fractions, you can reduce the fractional arithmetic to pure integer arithmetic; you stay within the same line count at the expense of some legibility:
def round_half_up(number, dec_places=0):
sign = math.copysign(1, number)
exact = abs(number).as_integer_ratio()
shifted = (exact[0] * 10**dec_places), exact[1]
shifted_trunc = shifted[0] // shifted[1]
difference = (shifted[0] - shifted_trunc * shifted[1]), shifted[1]
if difference[0] * 2 >= difference[1]: # difference >= 1/2
shifted_trunc += 1
return sign * (shifted_trunc / 10**dec_places)
Note that testing these functions brings to spotlight the approximations performed when creating floating-point numbers. For example, print(round_half_up(2.175, 2)) prints 2.17 because the decimal number 2.175 cannot be represented exactly in binary, so it is replaced by an approximation that happens to be slightly smaller than the 2.175 decimal. The function receives that value, finds it smaller than the actual fraction corresponding to the 2.175 decimal, and decides to round it down. This is not a quirk of the implementation; the behavior derives from properties of floating-point numbers and is also present in the round built-in of Python 3 and 2.
I don't like it, that I have to convert float to a string (to avoid
floating point inaccuracy) and then work with the decimal module. Do
you have any better solutions?
Yes; use Decimal to represent your numbers throughout your whole program, if you need to represent numbers such as 2.675 exactly and have them round to 2.68 instead of 2.67.
There is no other way. The floating point number which is shown on your screen as 2.675 is not the real number 2.675; in fact, it is very slightly less than 2.675, which is why it gets rounded down to 2.67:
>>> 2.675 - 2
0.6749999999999998
It only shows in string form as '2.675' because that happens to be the shortest string such that float(s) == 2.6749999999999998. Note that this longer representation (with lots of 9s) isn't exact either.
However you write your rounding function, it is not possible for my_round(2.675, 2) to round up to 2.68 and also for my_round(2 + 0.6749999999999998, 2) to round down to 2.67; because the inputs are actually the same floating point number.
So if your number 2.675 ever gets converted to a float and back again, you have already lost the information about whether it should round up or down. The solution is not to make it float in the first place.
After trying for a very long time to produce an elegant one-line function, I ended up getting something that is comparable to a dictionary in size.
I would say the simplest way to do this is just to
def round_half_up(inp,dec_places):
return round(inp+0.0000001,dec_places)
i would acknowledge that this is not accurate in every cases, but should work if you just want a simple quick workaround.

How to print a decimal number without exponential form / scientific notation?

To print a floating point number without exponential form, we can write like this:
print('%f' % (10**-8))
But this generally displays zeroes due to precision error. Instead, we can use Decimal.decimal(float) to print a floating point number precisely. But that prints the number in exponential format i.e. 10e-10. And I cannot seem to combine them as I don't know how to format a Decimal like the way I used '%f' to format floats.
So my question is, how to get this thing done the way I want?
Note: The power -8 used here is just an example. The power could be variable. Also, I was wondering if I could print the differences of two numbers with high precision.
from decimal import Decimal
print('%.8f' % Decimal(10**-8))
Outputs:
0.00000001
To specify decimal places dynamically you can use this:
from decimal import Decimal
power = 10
print('%.*f' % (power, Decimal(10**-power)))
Prints:
0.0000000001

Truncation in python

How can we truncate (not round) the cube root of a given number after the 10th decimal place in python?
For Example:
If number is 8 the required output is 2.0000000000 and for 33076161 it is 321.0000000000
Scale - truncate - unscale:
n = 10.0
cube_root = 1e-10 * int(1e10 * n**(1.0/3.0))
You should only do such truncations (unless you have a serious reason otherwise) while printing out results. There is no exact binary representation in floating point format, for a whole host of everyday decimal values:
print 33076161**(1.0/3.0)
A calculator gives you a different answer than Python gives you. Even Windows calculator does a passable job on cuberoot(33076161), whereas the answer given by python will be minutely incorrect unless you use rounding.
So, the question you ask is fundamentally unanswerable since it assumes capabilities that do not exist in floating point math.
Wrong Answer #1: This actually rounds instead of truncating, but for the cases you specified, it provides the correct output, probably due to rounding compensating for the inherent floating point precision problem you will hit in case #2:
print "%3.10f" % 10**(1.0/3.0)
Wrong Answer #2: But you could truncate (as a string) an 11-digit rounded value, which, as has been pointed out to me, would fail for values very near rollover, and in other strange ways, so DON'T do this:
print ("%3.11f" % 10**(1.0/3.0))[:-1]
Reasonably Close Answer #3: I wrote a little function that is for display only:
import math
def str_truncate(f,d):
s = f*(10.0**(d))
str = `math.trunc(s)`.rstrip('L')
n = len(str)-d
w = str[0:n]
if w=='':
w='0'
ad =str[n:d+n]
return w+'.'+ad
d = 8**(1.0/3.0)
t=str_truncate(d,10)
print 'case 1',t
d = 33076161**(1.0/3.0)
t=str_truncate(d,10)
print 'case 2',t
d = 10000**(1.0/3.0)
t=str_truncate(d,10)
print 'case 3',t
d = 0.1**(1.0/3.0)
t=str_truncate(d,10)
print 'case 4',t
Note that Python fails to perform exactly as per your expectations in case #2 due to your friendly neighborhood floating point precision being non-infinite.
You should maybe know about this document too:
What Every Computer Scientist Should Know About Floating Point
And you might be interested to know that Python has add-ons that provide arbitary precision features that will allow you to calculate the cube root of something to any number of decimals you might want. Using packages like mpmath, you can free yourself from the accuracy limitations of conventional floating point math, but at a considerable cost in performance (speed).
It is interesting to me that the built-in decimal unit does not solve this problem, since 1/3 is a rational (repeating) but non-terminating number in decimal, thus it can't be accurately represented either in decimal notation, nor floating point:
import decimal
third = decimal.Decimal(1)/decimal.Decimal(3)
print decimal.Decimal(33076161)**third # cuberoot using decimal
output:
320.9999999999999999999999998
Update: Sven provided this cool use of Logs which works for this particular case, it outputs the desired 321 value, instead of 320.99999...: Nifty. I love Log(). However this works for 321 cubed, but fails in the case of 320 cubed:
exp(log(33076161)/3)
It seems that fractions doesn't solve this problem, but I wish it did:
import fractions
third = fractions.Fraction(1,3)
def cuberoot(n):
return n ** third
print '%.14f'%cuberoot(33076161)
num = 17**(1.0/3.0)
num = int(num * 100000000000)/100000000000.0
print "%.10f" % num
What about this code .. I have created it for my personal use. although it is so simple, it is working well.
def truncation_machine(original,edge):
'''
Function of the function :) :
it performs truncation operation on long decimal numbers.
Input:
a) the number that needs to undergo truncation.
b) the no. of decimals that we want to KEEP.
Output:
A clean truncated number.
Example: original=1.123456789
edge=4
output=1.1234
'''
import math
g=original*(10**edge)
h=math.trunc(g)
T=h/(10**edge)
print('The original number ('+str(original)+') underwent a '+str(edge)+'-digit truncation to be in the form: '+str(T))
return T

Fractions with decimal precision

Is there a pure python implementation of fractions.Fraction that supports longs as numerator and denominator? Unfortunately, exponentiation appears to be coded in to return a float (ack!!!), which should at least support using decimal.Decimal.
If there isn't, I suppose I can probably make a copy of the library and try to replace occurrences of float() with something appropriate from Decimal but I'd rather something that's been tested by others before.
Here's a code example:
base = Fraction.from_decimal(Decimal(1).exp())
a = Fraction(69885L, 53L)
x = Fraction(9L, 10L)
print base**(-a*x), type(base**(-a*x))
results in 0.0 <type 'float'> where the answer should be a really small decimal.
Update: I've got the following work-around for now (assuming, for a**b, that both are fractions; of course, I'll need another function when exp_ is a float or is itself a Decimal):
def fracpow(base, exp_):
base = Decimal(base.numerator)/Decimal(base.denominator)
exp_ = Decimal(exp_.numerator)/Decimal(exp_.denominator)
return base**exp_
which gives the answer 4.08569925773896097019795484811E-516.
I'd still be interested if there's a better way of doing this without the extra functions (I'm guessing if I work with the Fraction class enough, I'll find other floats working their way into my results).
"Raise to a power" is not a closed operation over the rationals (differently from the usual four arithmetic operations): there is no rational number r such that r == 2 ** 0.5. Legend has it that Pythagoras (from whose theorem this fact so simply follows) had his disciple Hippasus killed for the horrible crime of proving this; looks like you sympathize wit Pythagoras' alleged reaction;-), given your weird use of "should".
Python's fractions are meant to be exact, so inevitably there are case in which raising a fraction to another fraction's power will be absolutely unable to return a fraction as its result; and "should" just cannot be sensibly applied to a mathematical impossibility.
So the best you can do is to approximate your desired result, e.g. by getting a result that's not an exact fraction (floats are generally considered sufficient for the purpose) and then further approximating it back with a fraction. Most existing pure-Python implementations (there are many rationals.py files found around the net;-) prefer not to implement a ** operator at all, but of course there's nothing stopping you from making a different design decision in your own implementation!-)
You can write your own "pow" function for fractions that doesn't use floating-point exponentiation. Is that what you're trying to do?
This will raise a fraction to an integer power with falling back to float.
def pow( fract, exp ):
if exp == 0:
return fract
elif exp % 2 == 0:
t = pow( fract, exp//2 )
return t*t
else:
return fract*pos( fract, exp-1 )

Categories

Resources