space tower in python with loops - python

1 2 3 4 5 6 7 8 9 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 7 6 5 4 3 2 1
1 2 3 4 5 6 6 5 4 3 2 1
1 2 3 4 5 5 4 3 2 1
1 2 3 4 4 3 2 1
1 2 3 3 2 1
1 2 2 1
1 1
How can I code this in python?
So far this is my code but I can't figure out the spaces.
number = int(input("enter a number to create your triangle: "))
for col in range(number,0,-1):
for row in range(1,col):
print(row, end=" ")
if col<number:
print(" "*(row*2), end="")
for row in range(col-1,0,-1):
print(row, end=" ")
print()

Instead of looping multiple times, you could create a base list containing all numbers as strings, iterate once to print each row and the reverse:
number = 9
base = [str(n) for n in range(1, number+1)]
for i, idx in enumerate(range(len(base)-1, 0, -1)):
if i == 0:
print(' '.join(base + base[::-1]))
base[idx] = ' '
print(' '.join(base + base[::-1]))
Out:
1 2 3 4 5 6 7 8 9 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 7 6 5 4 3 2 1
1 2 3 4 5 6 6 5 4 3 2 1
1 2 3 4 5 5 4 3 2 1
1 2 3 4 4 3 2 1
1 2 3 3 2 1
1 2 2 1
1 1

As I've pointed in this comment, using all "power" of print() and unpacking you can make it really easy.
By default all arguments passed to print() will be separated with space, so we can just unpack there range from 1 to current index, string of spaces and reverse range from current index to 1:
number = int(input("enter a number to create your triangle: "))
for i, n in enumerate(range(number, 0, -1)):
print(*range(1, n + 1), *(" " * (i * 2)), *range(n, 0, -1))
Output:
1 2 3 4 5 6 7 8 9 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 7 6 5 4 3 2 1
1 2 3 4 5 6 6 5 4 3 2 1
1 2 3 4 5 5 4 3 2 1
1 2 3 4 4 3 2 1
1 2 3 3 2 1
1 2 2 1
1 1
Important notice: Code above will work properly only for number below 10.

Related

Create a board of random integers 1..6 with no more than two adjacent repeated values

First, here is my code:
import random
Tablero = []
for i in range(0,20):
Tablero.append( [0]*9 )
for Fila in range(20):
for Columna in range(9):
Tablero[Fila][Columna] = random.randint(1,6)
for i in range (0,20):
for j in range (0, 9) :
print(str.rjust(str(Tablero[i][j]), 4), end = "")
print();
input()
And the current output:
3 5 5 2 6 2 2 3 6
6 2 5 3 4 1 6 4 5
1 5 4 2 1 4 6 6 6
4 6 6 2 1 3 5 6 1
5 2 2 1 1 4 5 6 1
3 6 3 1 6 2 6 2 6
1 1 5 2 6 5 3 6 5
1 2 1 6 1 3 4 1 6
5 2 3 2 1 6 3 4 3
4 6 6 6 6 6 5 1 2
4 4 5 4 3 6 5 1 3
4 5 1 2 2 3 5 2 5
1 2 4 5 2 2 3 2 4
2 1 5 3 4 1 2 4 6
1 3 3 4 4 4 6 5 6
6 6 2 2 3 1 6 3 3
1 5 6 4 2 6 2 1 4
2 3 5 5 6 6 2 4 4
5 5 1 6 1 2 5 4 4
2 3 6 5 4 6 2 2 3
Problem: there are cases where the same numbers appear more than 3 times in a row, this only matters for the COLUMNS.
Example:
1 3 3 4 4 4 6 5 6
And it should be:
1 3 3 4 4 2 4 2 6
I am trying this code for like a week... I was able to do it separately but adding it to this program did not work.
A simple code would be greatly appreciated.
EDIT: The program is similar to the game candy crush. In this program, only the columns matter when adding points, that is to say, only these have to be aligned (3,3,3) would be equivalent to a certain score. Therefore, the program should not generate this : 1 3 3 4 4 4 6 5 6, because otherwise it would play on its own. Since then, one must enter the row and column of a number which will be eliminated and that in that position will fall the number that is above.

Need to count repeating, consecutive values in python dataframe within a groupby

df = pd.DataFrame({'site':[1,1,1,1,1,1,1,1,1,1], 'parm':[8,8,8,8,8,9,9,9,9,9],
'date':[1,2,3,4,5,1,2,3,4,5], 'obs':[1,1,2,3,3,3,5,5,6,6]})
Output
site parm date obs
0 1 8 1 1
1 1 8 2 1
2 1 8 3 2
3 1 8 4 3
4 1 8 5 3
5 1 9 1 3
6 1 9 2 5
7 1 9 3 5
8 1 9 4 6
9 1 9 5 6
I want to count repeating, sequential "obs" values within a "site" and "parm". I have this code which is close:
df['consecutive'] = df.parm.groupby((df.obs != df.obs.shift()).cumsum()).transform('size')
Output
site parm date obs consecutive
0 1 8 1 1 2
1 1 8 2 1 2
2 1 8 3 2 1
3 1 8 4 3 3
4 1 8 5 3 3
5 1 9 1 3 3
6 1 9 2 5 2
7 1 9 3 5 2
8 1 9 4 6 2
9 1 9 5 6 2
It creates the new column with the count. The gap is when the parm changes from 8 to 9 it includes the parm 9 in the parm 8 count. The expected output is:
site parm date obs consecutive
0 1 8 1 1 2
1 1 8 2 1 2
2 1 8 3 2 1
3 1 8 4 3 2
4 1 8 5 3 2
5 1 9 1 3 1
6 1 9 2 5 2
7 1 9 3 5 2
8 1 9 4 6 2
9 1 9 5 6 2
You need to throw site, parm as indicated in the question into groupby:
df['consecutive'] = (df.groupby([df.obs.ne(df.obs.shift()).cumsum(),
'site', 'parm']
)
['obs'].transform('size')
)
Output:
site parm date obs consecutive
0 1 8 1 1 2
1 1 8 2 1 2
2 1 8 3 2 1
3 1 8 4 3 2
4 1 8 5 3 2
5 1 9 1 3 1
6 1 9 2 5 2
7 1 9 3 5 2
8 1 9 4 6 2
9 1 9 5 6 2

Number pattern using nested loop

Here is my code which prints a particular number pattern. I want my number pattern to be in perfect triangular arrangement like:
a = int(input('Enter number: '))
base = a
while base > 0:
for j in range(1, a + 1):
print(' ' * (2 * j - 2), end = '')
for i in range(1, base + 1):
print(str(i), end = ' ')
print()
base -= 1
The output:
Enter number: 5
1 2 3 4 5
1 2 3 4
1 2 3
1 2
1
Enter number: 7
1 2 3 4 5 6 7
1 2 3 4 5 6
1 2 3 4 5
1 2 3 4
1 2 3
1 2
1
The program works fine for numbers < 10 but when I input a number > 10 it gives a distorted pattern.
For example:
Enter number: 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7
1 2 3 4 5 6
1 2 3 4 5
1 2 3 4
1 2 3
1 2
1
So is there a way to make the pattern right?
If you want to have the same result for two digit numbers, you have to format your string. Here how it also works for two digit results:
a = int(input('Enter number: '))
base = a
while base > 0:
for j in range(1, a + 1):
print(' ' * (2 * j - 2), end = '')
for i in range(1, base + 1):
print('{0:>2}'.format(str(i)), end = ' ')
print()
base -= 1
Result for 15:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7
1 2 3 4 5 6
1 2 3 4 5
1 2 3 4
1 2 3
1 2
1
Some adjustments and str.rjust will do the trick:
a = base = 15
while base > 0:
for j in range(a):
print(' ' * 3 * j, end='')
for i in range(base):
print(str(i+1).rjust(3), end='')
print()
base -= 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7
1 2 3 4 5 6
1 2 3 4 5
1 2 3 4
1 2 3
1 2
1
You might use rjust method of str, it does:
Return a right-justified string of length width. Padding is done using
the specified fill character (default is a space).
Simple example usage:
numbers = [1, 10, 10, 1000, 10000]
for n in numbers:
print(str(n).rjust(5))
Output:
1
10
10
1000
10000
Note that rjust requires at least one argument: width, if original str is shorther than width leading spaces (or other characters if specified) will be added to get str of length equal to width, otherwise original str will be returned.

How to drop certain values after checking a condition on the second column?

Assuming a df as follows:
Product Time
1 1
1 2
1 3
1 4
2 1
2 2
2 3
2 4
2 5
2 6
2 7
3 1
3 2
3 3
4 1
4 2
4 3
I would like to only keep those Products whose Time is greater than 3 and drop the others.
In the above example, after I do
df.groupby(['Product']).size()
I get the following output:
1 4
2 7
3 3
4 3
and based on this, from my main df, I would only like to retain Product 1 & 2
Expected output:
Product Time
1 1
1 2
1 3
1 4
2 1
2 2
2 3
2 4
2 5
2 6
2 7
Use GroupBy.transform for return Series with same size like original, so possible filtering by boolean indexing:
df = df[df.groupby(['Product'])['Product'].transform('size') > 3]
print (df)
Product Time
0 1 1
1 1 2
2 1 3
3 1 4
4 2 1
5 2 2
6 2 3
7 2 4
8 2 5
9 2 6
10 2 7
Details:
b = df.groupby(['Product'])['Product'].transform('size') > 3
a = df.groupby(['Product'])['Product'].transform('size')
print (df.assign(size=a, filter=b))
Product Time size filter
0 1 1 4 True
1 1 2 4 True
2 1 3 4 True
3 1 4 4 True
4 2 1 7 True
5 2 2 7 True
6 2 3 7 True
7 2 4 7 True
8 2 5 7 True
9 2 6 7 True
10 2 7 7 True
11 3 1 3 False
12 3 2 3 False
13 3 3 3 False
14 4 1 3 False
15 4 2 3 False
16 4 3 3 False
If DataFrame is not large, here is alternative with DataFrameGroupBy.filter:
df = df.groupby(['Product']).filter(lambda x: len(x) > 3)
Instead use transform.size after grouping, check which are greater than (gt) 3 and use the result to perform boolean indexing on your dataframe:
df[df.groupby('Product').Time.transform('size').gt(3)]
Product Time
0 1 1
1 1 2
2 1 3
3 1 4
4 2 1
5 2 2
6 2 3
7 2 4
8 2 5
9 2 6
10 2 7
You can do this if you don't plan to use assign operation and you like to use boolean indexing.
g = df.groupby('Product')
t = g.transform('count')
df['c']=t #new column holding the count
df2=df[df['c'] > 3]
print(df2)
Product Time
0 1 1
1 1 2
2 1 3
3 1 4
4 2 1
5 2 2
6 2 3
7 2 4
8 2 5
9 2 6
10 2 7
11 3 1
12 3 2
13 3 3
14 4 1
15 4 2
16 4 3
Product Time c
0 1 1 4
1 1 2 4
2 1 3 4
3 1 4 4
4 2 1 7
5 2 2 7
6 2 3 7
7 2 4 7
8 2 5 7
9 2 6 7
10 2 7 7

nested loops results bunched together Python

for j in range(10):
for i in range(10):
print(j,end=" ")
My results are bunched together and I need to have 10 numbers per line. I cant use a print("0123456789"). I have tried print(j,j,j,j,j,j,j,j,j) and I get the results that I'm looking for but I'm sure this isn't the proper way to write the code.
If print(j,j,j,j,j,j,j,j,j) works then you simply need to add another print() after each iteration:
for j in range(10):
for i in range(10):
print(j,end=" ")
print()
Output:
0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9 9
Or simply:
for j in range(10):
print(" ".join(str(j) * 10))
0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9 9
Why are you using a nested for loop when you can use a single for loop:
for i in range(10):
print('{} '.format(i) * 10)
This is similar to Malik Brahimi's solution, except it doesn't put a space after the last digit on each line:
for i in range(10):
print(' '.join([str(i)]*10))
output
0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9 9
Just for fun, here's another way to do it with a single loop, this time using a format string with numbered fields.
fmt = ('{0} ' * 10)[:-1]
for i in range(10):
print(fmt.format(i))

Categories

Resources