I am trying to use the 4th order Runge-Kutta method to approximate the solution to a system of 1st order ODEs. The RK4 implementation itself is correct I think, if kind of janky - the plots it produces look like the right shape anyway - but it relies on 3 constants c, d and h, and I want to see how the solution changes as I vary those constants. I could just manually change them, but I wanted to make it interactive using sliders.
I want there to eventually be a slider for each of the 3 constants; right now I can't get even a single slider, the one for c, to work correctly. It's definitely... present, I can slide it back and forth, but the graph doesn't update as the value of c changes - even though I have defined a Slider.on_changed for it and have remembered to re-call the RK4 function with the slider value and re-set the line data:
%matplotlib notebook
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider, Button
import math
y_inits = [95, 5, 0]
c = 1
d = 5
fStepSize = 0.01
iLower = 0
iUpper = 1
tDerivatives = [
lambda t, y1, y2, y3: -c*y1*y2,
lambda t, y1, y2, y3: (c*y1*y2) - (d*y2),
lambda t, y1, y2, y3: d*y2
]
tColors = ["blue", "red", "yellow", "green", "black", "purple"]
def RK4(c, d, fStepSize):
tY_est = [ [y_inits[i]] for i in range(len(tDerivatives)) ]
tT = [iLower]
iRange = iUpper - iLower
n = math.ceil(iRange / fStepSize)
for i in range(n+1)[1:]:
fT_last = tT[i-1]
fT_new = fT_last + fStepSize
tK = []
for j in range(len(tDerivatives)):
Derivative = tDerivatives[j]
fK1 = fStepSize * Derivative(fT_last, *[tY_est[k][i-1] for k in range(len(tY_est))])
tK.append(["y'"+str(j+1), fK1])
for j in range(len(tDerivatives)):
Derivative = tDerivatives[j]
fK2 = fStepSize * Derivative(fT_last + (fStepSize/2), *[tY_est[k][i-1] + (tK[k][1]/2) for k in range(len(tY_est))])
tK[j].append(fK2)
for j in range(len(tDerivatives)):
Derivative = tDerivatives[j]
fK3 = fStepSize * Derivative(fT_last + (fStepSize/2), *[tY_est[k][i-1] + (tK[k][2]/2) for k in range(len(tY_est))])
tK[j].append(fK3)
for j in range(len(tDerivatives)):
Derivative = tDerivatives[j]
fK4 = fStepSize * Derivative(fT_new, *[tY_est[k][i-1] + tK[k][3] for k in range(len(tY_est))])
tK[j].append(fK4)
for j in range(len(tY_est)):
fY_est_new = tY_est[j][i-1] + (( tK[j][1] + (2*tK[j][2]) + (2*tK[j][3]) + tK[j][4] )/6)
tY_est[j].append(fY_est_new)
tT.append(fT_new)
return tT, tY_est
fig, ax = plt.subplots()
plt.subplots_adjust(left=0.25, bottom=0.25)
tT_init, tY_est_init = RK4(c, d, fStepSize)
tPlots = [ ax.plot(tT_init, tY_est_init[i], marker=".", color=tColors[i]) for i in range(len(tDerivatives)) ]
plt.xlabel('t')
plt.ylabel('y(t)')
plt.title('h = '+str(fStepSize))
axfreq = fig.add_axes([0.25, 0.1, 0.65, 0.03])
c_slider = Slider(
ax=axfreq,
label='c',
valmin=0.1,
valmax=30,
valinit=c,
)
def Update(val):
tT, tY_est = RK4(c_slider.val, d, fStepSize)
for i in range(len(tPlots)):
tPlots[i].set_data(tT, tY_est[i])
fig.canvas.draw()
c_slider.on_changed(Update)
No error messages are thrown.
I should note that I have used this slider demo from the matplotlib site itself as a base for my slider implementation. And their code works just fine, in that the resultant plot lines are responsive to the slider change, even in my environment - so it's not just a matter of "matplotlib isn't interactive in Jupyter Notebook".
I've also tried fiddling with the fig.canvas.draw() line in Update - maybe it's supposed to be draw_idle, or maybe I should use plt.draw(), or some other things, but none of them seem to have any effect.
What do I need to change to make the slider responsive?
EDIT:
There turned out to be two problems, as discussed in the comments of Yacine's answer. Besides how the lines are being instantiated (see Yacine's answer), the other problem is that the above code defines RK4 to not actually pass the c_slider.val to the RK4 subroutines that needed them. So the graph was updating... but using the exact same global c variable every time.
The full solution, with all 3 sliders I wanted, is as follows:
%matplotlib notebook
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider, Button
import math
y_inits = [95, 5, 0]
c_init = 1
d_init = 5
fStepSize = 0.01
iLower = 0
iUpper = 1
tDerivatives = [
lambda c, d, t, y1, y2, y3: -c*y1*y2,
lambda c, d, t, y1, y2, y3: (c*y1*y2) - (d*y2),
lambda c, d, t, y1, y2, y3: d*y2
]
tColors = ["blue", "red", "yellow", "green", "black", "purple"]
def RK4(c, d, fStepSize):
tY_est = [ [y_inits[i]] for i in range(len(tDerivatives)) ]
tT = [iLower]
iRange = iUpper - iLower
n = math.ceil(iRange / fStepSize)
for i in range(n+1)[1:]:
fT_last = tT[i-1]
fT_new = fT_last + fStepSize
tK = []
for j in range(len(tDerivatives)):
Derivative = tDerivatives[j]
fK1 = fStepSize * Derivative(c, d, fT_last, *[tY_est[k][i-1] for k in range(len(tY_est))])
tK.append(["y'"+str(j+1), fK1])
for j in range(len(tDerivatives)):
Derivative = tDerivatives[j]
fK2 = fStepSize * Derivative(c, d, fT_last + (fStepSize/2), *[tY_est[k][i-1] + (tK[k][1]/2) for k in range(len(tY_est))])
tK[j].append(fK2)
for j in range(len(tDerivatives)):
Derivative = tDerivatives[j]
fK3 = fStepSize * Derivative(c, d, fT_last + (fStepSize/2), *[tY_est[k][i-1] + (tK[k][2]/2) for k in range(len(tY_est))])
tK[j].append(fK3)
for j in range(len(tDerivatives)):
Derivative = tDerivatives[j]
fK4 = fStepSize * Derivative(c, d, fT_new, *[tY_est[k][i-1] + tK[k][3] for k in range(len(tY_est))])
tK[j].append(fK4)
for j in range(len(tY_est)):
fY_est_new = tY_est[j][i-1] + (( tK[j][1] + (2*tK[j][2]) + (2*tK[j][3]) + tK[j][4] )/6)
tY_est[j].append(fY_est_new)
tT.append(fT_new)
return tT, tY_est
fig, ax = plt.subplots()
plt.subplots_adjust(left=0.25, bottom=0.25)
plt.xlabel('t')
plt.ylabel('y(t)')
plt.title('h = '+str(fStepSize))
c_slider = Slider(
ax=fig.add_axes([0.25, 0.1, 0.65, 0.03]),
label='c',
valmin=0.1,
valmax=5,
valinit=c_init,
)
d_slider = Slider(
ax=fig.add_axes([0.25, 0.06, 0.65, 0.03]),
label='d',
valmin=0.1,
valmax=10,
valinit=d_init,
)
h_slider = Slider(
ax=fig.add_axes([0.25, 0.02, 0.65, 0.03]),
label='h',
valmin=0.001,
valmax=0.1,
valinit=fStepSize,
)
tPlots = [ax.plot([], [], marker=".", color=tColors[i])[0] for i in range(len(tDerivatives))]
def Update(val):
fStepSize = h_slider.val
tT, tY_est = RK4(c_slider.val, d_slider.val, fStepSize)
for i in range(len(tPlots)):
tPlots[i].set_data(tT, tY_est[i])
fig.canvas.draw_idle()
ax.relim()
ax.autoscale_view()
c_slider.on_changed(Update)
d_slider.on_changed(Update)
h_slider.on_changed(Update)
tT_init, tY_est_init = RK4(c_init, d_init, fStepSize)
for i in range(len(tPlots)):
tPlots[i].set_data(tT_init, tY_est_init[i])
ax.relim()
ax.autoscale_view()
plt.show()
I think the issue is that you need to set the data for the lines in the Update function. You're setting the data for the initial plot in the RK4 function, but that won't update the plot when the slider value changes.
fig, ax = plt.subplots()
plt.subplots_adjust(left=0.25, bottom=0.25)
# create empty lists for the line data
tPlots = [ax.plot([], [], marker=".", color=tColors[i])[0] for i in range(len(tDerivatives))]
def Update(val):
tT, tY_est = RK4(c_slider.val, d, fStepSize)
for i in range(len(tPlots)):
# set the data for each line
tPlots[i].set_data(tT, tY_est[i])
ax.relim()
ax.autoscale_view()
fig.canvas.draw()
# set the initial data for the lines
tT_init, tY_est_init = RK4(c, d, fStepSize)
for i in range(len(tPlots)):
tPlots[i].set_data(tT_init, tY_est_init[i])
# add the slider
axfreq = fig.add_axes([0.25, 0.1, 0.65, 0.03])
c_slider = Slider(
ax=axfreq,
label='c',
valmin=0.1,
valmax=30,
valinit=c,
)
c_slider.on_changed(Update)
plt.xlabel('t')
plt.ylabel('y(t)')
plt.title('h = '+str(fStepSize))
plt.show()
There's also the option of using ipywidgets' interactive and letting it handle making the connections to the sliders and being responsive. It will actually make the sliders itself when supplied by tuples of the values desired like in the examples I'll point to below; however, as you wanted the initial settings I defined the sliders here.
It should be something like this; however, I'm having a little problem putting it all together so that it makes the three lines correctly. And so for now, this just demonstrates the slider handling and isn't plotting correctly (?!?!). It does at least respond to changes in sliders:
# PLOT ISN'T WORKING RIGHT BUT SLIDERS SEEM RESPONSIVE.
from ipywidgets import interactive
import ipywidgets as widgets
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.widgets import Slider, Button
import math
y_inits = [95, 5, 0]
c = 1
d = 5
fStepSize = 0.01
iLower = 0
iUpper = 1
tDerivatives = [
lambda t, y1, y2, y3: -c*y1*y2,
lambda t, y1, y2, y3: (c*y1*y2) - (d*y2),
lambda t, y1, y2, y3: d*y2
]
tColors = ["blue", "red", "yellow", "green", "black", "purple"]
def RK4(c, d, fStepSize):
tY_est = [ [y_inits[i]] for i in range(len(tDerivatives)) ]
tT = [iLower]
iRange = iUpper - iLower
n = math.ceil(iRange / fStepSize)
for i in range(n+1)[1:]:
fT_last = tT[i-1]
fT_new = fT_last + fStepSize
tK = []
for j in range(len(tDerivatives)):
Derivative = tDerivatives[j]
fK1 = fStepSize * Derivative(fT_last, *[tY_est[k][i-1] for k in range(len(tY_est))])
tK.append(["y'"+str(j+1), fK1])
for j in range(len(tDerivatives)):
Derivative = tDerivatives[j]
fK2 = fStepSize * Derivative(fT_last + (fStepSize/2), *[tY_est[k][i-1] + (tK[k][1]/2) for k in range(len(tY_est))])
tK[j].append(fK2)
for j in range(len(tDerivatives)):
Derivative = tDerivatives[j]
fK3 = fStepSize * Derivative(fT_last + (fStepSize/2), *[tY_est[k][i-1] + (tK[k][2]/2) for k in range(len(tY_est))])
tK[j].append(fK3)
for j in range(len(tDerivatives)):
Derivative = tDerivatives[j]
fK4 = fStepSize * Derivative(fT_new, *[tY_est[k][i-1] + tK[k][3] for k in range(len(tY_est))])
tK[j].append(fK4)
for j in range(len(tY_est)):
fY_est_new = tY_est[j][i-1] + (( tK[j][1] + (2*tK[j][2]) + (2*tK[j][3]) + tK[j][4] )/6)
tY_est[j].append(fY_est_new)
tT.append(fT_new)
return tT, tY_est
def f(c, d, fStepSize):
#[l.remove() for l in ax.lines]
fig, ax = plt.subplots()
plt.subplots_adjust(left=0.25, bottom=0.25)
plt.xlabel('t')
plt.ylabel('y(t)')
plt.title('h = '+str(fStepSize))
tPlots = [ax.plot([], [], marker=".", color=tColors[i])[0] for i in range(len(tDerivatives))]
tT, tY_est = RK4(c, d, fStepSize)
for i in range(len(tPlots)):
tPlots[i].set_data(tT, tY_est[i])
plt.grid(True) #optional grid
plt.show()
cc=widgets.FloatSlider(min=0.1,max=5,value=1) #Create an FloatSlider such that the range is [0.1,5] and default is 1
dc=widgets.FloatSlider(min=0.1,max=10,value=5) #Create an FloatSlider such that the range is [0.1,10] and default is 5
hc=widgets.FloatSlider(min=0.01,max=1,value=0.1) #Create an FloatSlider such that the range is [0.01,1] and default is 0.1
interactive_plot = interactive(f, c=cc, d=dc, fStepSize=hc)
interactive_plot
This is based on here and here.
It'd be much better at selling ipywidgets' interactive if it actually made the same plot, but maybe eventually I'll see the issue and fix it.
Related
I've got a set of points (coordinates X and Y) generated by a mathematical expression and I want to draw the resulting figure in a specific position of the screen (I'd like to determine the position in which to center the drawn figure).
I tried using the following code to test if the formula resulted in the correct figure. But now I need to draw the same contour on a pre-existing image at a specific position.
B = 185
L = 250
W = (L-B)/6
D = (L/2)-L/4
x = np.linspace(-L/2, L/2, 500)
y1 = []
y2 = []
for X in x:
termo1 = sqrt((L**2 - 4*X**2) / (L**2 + 8*W*X + 4*W**2))
termo2 = ((sqrt(5.5*L**2 + 11*L*W + 4*W**2) * (sqrt(3)*B*B - 2*D*sqrt(L**2 + 2*W*L + 4*W**2))
) / (sqrt(3)*B*L*(sqrt(5.5*L**2 + 11*L*W + 4*W**2) - 2*sqrt(L**2 + 2*W*L + 4*W**2))))
termo3 = 1 - sqrt((L*(L**2 + 8*W*X + 4*W**2)) / (2*(L - 2*W)*X**2 +
(L**2 + 8*L*W - 4*W**2)*X + 2*L*W**2 + L**2*W + L**2*W + L**3))
calculo = B/2 * termo1 * (1-termo2 * termo3)
y1.append(calculo)
calculo = -B/2 * termo1 * (1-termo2 * termo3)
y2.append(calculo)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.spines['left'].set_position('center')
ax.spines['bottom'].set_position('zero')
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
plt.plot(x, y1, 'r')
plt.plot(x, y2, 'r')
plt.show()
You can do this by creating an onclick event; it will take the mouse cords when click and use them as an offset...I think that's what you are asking for? Though with the current plot x/y limits, it won't show up depending on where you click so I added those in the configuration of the plot.
import numpy as np
from math import sqrt
import matplotlib.pyplot as plt
import os
import matplotlib.image as mpimg
def onclick(event):
global ix, iy
ix, iy = event.xdata, event.ydata
plt.plot(x + ix, y1+ iy, 'r')
plt.plot(x + ix, y2+ iy, 'r')
plt.show()
fig.canvas.mpl_disconnect(cid)
return
B = 185
L = 250
W = (L-B)/6
D = (L/2)-L/4
x = np.linspace(-L/2, L/2, 500)
y1 = []
y2 = []
for X in x:
termo1 = sqrt((L**2 - 4*X**2) / (L**2 + 8*W*X + 4*W**2))
termo2 = ((sqrt(5.5*L**2 + 11*L*W + 4*W**2) * (sqrt(3)*B*B - 2*D*sqrt(L**2 + 2*W*L + 4*W**2))
) / (sqrt(3)*B*L*(sqrt(5.5*L**2 + 11*L*W + 4*W**2) - 2*sqrt(L**2 + 2*W*L + 4*W**2))))
termo3 = 1 - sqrt((L*(L**2 + 8*W*X + 4*W**2)) / (2*(L - 2*W)*X**2 +
(L**2 + 8*L*W - 4*W**2)*X + 2*L*W**2 + L**2*W + L**2*W + L**3))
calculo = B/2 * termo1 * (1-termo2 * termo3)
y1.append(calculo)
calculo = -B/2 * termo1 * (1-termo2 * termo3)
y2.append(calculo)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.set_xlim([-500,500])
ax.set_ylim([-500,500])
ax.spines['left'].set_position('center')
ax.spines['bottom'].set_position('zero')
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
coords = []
cid = fig.canvas.mpl_connect('button_press_event', onclick)
plt.show()
I am simulating spring-mass system. This is the code.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
k = 1
m = 1
def f(x, u, t):
return -k/m*x
x_graph = []
t_graph = []
u_graph = []
y_graph = []
def func(x_0, u_0, t_0, h):
for i in range(1, 1000):
m1 = h*u_0
k1 = h*f(x_0, u_0, t_0)
m2 = h*(u_0 + 0.5*k1)
k2 = h*f(x_0+0.5*m1, u_0+0.5*k1, t_0+0.5*h)
m3 = h*(u_0 + 0.5*k2)
k3 = h*f(x_0+0.5*m2, u_0+0.5*k2, t_0+0.5*h)
m4 = h*(u_0 + k3)
k4 = h*f(x_0+m3, u_0+k3, t_0+h)
x_0 += (m1 + 2*m2 + 2*m3 + m4)/6
u_0 += (k1 + 2*k2 + 2*k3 + k4)/6
t_0 += h
x_graph.append(x_0)
t_graph.append(t_0)
u_graph.append(u_0)
y_graph.append(0)
return x_0
print(func(0, 5, np.pi, 0.01))
fig, ax = plt.subplots()
ax.set(xlim=(-5.1, 5.1), ylim=(-0.05,1))
# ax.grid()
def animate(i):
l1.set_data(x_graph[:i],y_graph[:i])
return l1,
l1, = ax.plot([],[], 'o-',markevery=[-1])
ani = animation.FuncAnimation(fig, animate,frames=len(t_graph),interval =5, blit=True)
# plt.show()
ani.save('pandemic.gif', writer='ffmpeg')
I want to have a spring at point (-5,0) which changes its position as the block moves. My current output is this
Edit1:- I have added code which includes data for x_graph, y_graph and t_graph.
Correct answer has already been provided. I am adding a different solution. This solution will suit if the spring is attached on the left to a rigid wall and the ball is moving. The spring stretches and compresses based on the distance between the wall and the ball. This looks like below.
I changed your code very slightly to do this. Please beware that some of the values are hard coded so one has to change them to suit the requirement. It is very easy to change them depending on the x_lim values.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
k = 1
m = 1
def f(x, u, t):
return -k/m*x
x_graph = []
t_graph = []
u_graph = []
y_graph = []
def func(x_0, u_0, t_0, h):
for i in range(1, 1000):
m1 = h*u_0
k1 = h*f(x_0, u_0, t_0)
m2 = h*(u_0 + 0.5*k1)
k2 = h*f(x_0+0.5*m1, u_0+0.5*k1, t_0+0.5*h)
m3 = h*(u_0 + 0.5*k2)
k3 = h*f(x_0+0.5*m2, u_0+0.5*k2, t_0+0.5*h)
m4 = h*(u_0 + k3)
k4 = h*f(x_0+m3, u_0+k3, t_0+h)
x_0 += (m1 + 2*m2 + 2*m3 + m4)/6
u_0 += (k1 + 2*k2 + 2*k3 + k4)/6
t_0 += h
x_graph.append(x_0)
t_graph.append(t_0)
u_graph.append(u_0)
y_graph.append(0)
return x_0
print(func(0, 5, np.pi, 0.01))
fig, ax = plt.subplots()
ax.set(xlim=(-5.1, 5.1), ylim=(-1,1))
# ax.grid()
def animate(i):
l1.set_data(x_graph[:i],y_graph[:i])
sin_x = []
sin_y = []
for j in np.linspace(-5,x_graph[i],250):
sin_x.append(j)
sin_y.append(0.15*np.sin((j+5)*(2*np.pi)*10/(x_graph[i]+5)))
l2.set_data(sin_x, sin_y)
return l1,l2,
l1, = ax.plot([],[], 'o',markevery=[-1])
l2, = ax.plot([],[], '-')
ani = animation.FuncAnimation(fig, animate, frames=len(t_graph),interval =0.5, blit=True)
# plt.show()
ani.save('pandemic.gif', writer='imagemagic')
I think you are trying to simulate a mass osculating around a point.
This small edit should work
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
k = 1
m = 1
def f(x, u, t):
return -k/m*x
def func(x_0, u_0, t_0, h):
x_graph = []
t_graph = []
u_graph = []
y_graph = []
for i in range(1, 1000):
m1 = h*u_0
k1 = h*f(x_0, u_0, t_0)
m2 = h*(u_0 + 0.5*k1)
k2 = h*f(x_0+0.5*m1, u_0+0.5*k1, t_0+0.5*h)
m3 = h*(u_0 + 0.5*k2)
k3 = h*f(x_0+0.5*m2, u_0+0.5*k2, t_0+0.5*h)
m4 = h*(u_0 + k3)
k4 = h*f(x_0+m3, u_0+k3, t_0+h)
x_0 += (m1 + 2*m2 + 2*m3 + m4)/6
u_0 += (k1 + 2*k2 + 2*k3 + k4)/6
t_0 += h
x_graph.append(x_0)
t_graph.append(t_0)
u_graph.append(u_0)
y_graph.append(0)
return t_graph, x_graph, y_graph, u_graph
t, x, y, u = func(0, 5, np.pi, 0.01)
fig, ax = plt.subplots()
ax.set(xlim=(-5.1, 5.1), ylim=(-0.05,1))
# ax.grid()
def animate(i):
i, j = [0, x[i]], [0, y[i]]
l1.set_data(i, j)
return l1,
l1, = ax.plot([],[], 'o-',markevery=[-1])
l2, = ax.plot([],[], 'o-',markevery=[-1])
l3, = ax.plot([],[], 'o-',markevery=[-1])
ani = animation.FuncAnimation(fig, animate,frames=len(t),interval =5, blit=True)
fig.show()
ani.save('pandemic.mp4', writer='ffmpeg')
So the purpose of my code is to use inputted data points to give a gaussian plot distribution. I figured out how to make it work with a double gaussian but I'm having a lot of trouble adding a third. Im not quite sure what I'm doing wrong. 1 of the errors I keep getting is an Index Error saying that the list index is out of range. I would appreciate any help with this.
Heres my code:
from pylab import *
import numpy as np
from numpy import loadtxt
from scipy.optimize import leastsq
from scipy.optimize import least_squares
from scipy.stats import iqr
import math
import matplotlib.pyplot as plt
import sys
matplotlib.rcParams['mathtext.default'] = 'regular'
fitfunc_triple = lambda p, x: np.abs(p[0]) * exp(-0.5 * ((x - p[1]) / p[2]) ** 2) + np.abs(p[3]) * exp(
-0.5 * ((x - p[4]) / p[5]) ** 2) + np.abs(p[6]) * exp(-0.5 * ((x - p[7])/ p[8] **2 ))
fitfunc_double = lambda p, x: np.abs(p[0]) * exp(-0.5 * ((x - p[1]) / p[2]) ** 2) + np.abs(p[3]) * exp(
-0.5 * ((x - p[4]) / p[5]) ** 2)
fitfunc_single = lambda p, x: np.abs(p[0]) * exp(-0.5 * ((x - p[1]) / p[2]) ** 2)
errfunc = lambda p, x, y: (y - fitfunc(p, x))
dataR = np.loadtxt("/Users/Safi/Library/Preferences/PyCharmCE2018.1/scratches/rspecial1385.a2261.dat5", skiprows=0)
RA = dataR[:, 0]
DEC = dataR[:, 1]
VELR = dataR[:, 2]
REDSH = dataR[:, 3]
RADD = dataR[:, 4]
sl = 3E5
zbar = np.mean(REDSH)
vc = zbar * sl
VEL = vc + sl * ((REDSH - zbar) / (1 + zbar))
wdith = 200
iters = 10
sig2 = 500
binN = int(math.ceil((np.max(VEL) - np.min(VEL)) / wdith))
sys.stdout = open(str(wdith) + "_1sigma_" + str(iters) + "_sig2_" + str(sig2) + ".txt", "w")
plt.figure(1)
y, x, _ = plt.hist(VEL, binN, alpha=0.5, label='data')
x = (x[1:] + x[:-1]) / 2 # for len(x)==len(y)
data = np.vstack((x, y)).T
xdata = data[:, 0]
ydata = data[:, 1]
yerr = ydata ** 0.5
init = [10, 69500, 1200, 5, 68000, sig2]
bds = ([0, 66000, 800, 0, 66000, sig2], [50, 70000, 1750, 20, 70000, sig2 + 0.01])
def index_outlier(data):
inter_quart = iqr(data) * 1.5
bd2 = np.percentile(data, 75) + inter_quart
bd1 = np.percentile(data, 25) - inter_quart
index = []
for i in [i for i, x in enumerate(data) if x < bd1 or x > bd2]:
index.append(i)
return (index)
#### Bootstrapping Estimation Function ####
def fit_bootstrap(fitfunc, datax, datay, init, bds, sigma, iterations=iters):
errfunc = lambda p, x, y: (y - fitfunc(p, x))
# Fit first time
pfit = least_squares(errfunc, init, bounds=bds, args=(datax, datay), max_nfev=10000)
model = fitfunc(pfit.x, datax)
residuals = pfit.fun
# Random data sets are generated and fitted
ps = []
for i in range(iterations):
randomdataY = []
for k in range(len(sigma)):
randomDelta = np.random.normal(0., sigma[k], 1)
randomdataY.append(datay[k] + randomDelta)
out = np.concatenate(randomdataY)
randomfit = least_squares(errfunc, init, bounds=bds, args=(datax, out))
ps.append(randomfit.x)
# Removing outliers
# Finding outliers and indexing them
master_list = []
indexed = []
for k in range(len(ps[0])): # 0-6
it = []
for i in range(len(ps)): # 0-1000
it.append(ps[i][k])
master_list.append(it)
# indexed.append(index_outlier(master_list[k]))
# # List of outlier indicies
# flat_list=[item for sublist in indexed for item in sublist]
# no_dups= list(set(flat_list))
# # Removing bad fits
# for k in range(len(master_list)):
# for i in sorted(no_dups,reverse=True):
# del master_list[k][i]
pfit_bootstrap = []
perr_bootstrap = []
for i in master_list:
pfit_bootstrap.append(np.median(i))
perr_pos = np.round(np.percentile(i, 84) - np.median(i), 4)
perr_neg = np.round(np.median(i) - np.percentile(i, 16), 4)
perr_bootstrap.append(str('[+') + str(perr_pos) + str(',-') + str(perr_neg) + str(']'))
return (pfit_bootstrap, perr_bootstrap, residuals, pfit.nfev, master_list)
pfit, perr, residuals, nfev, master_list = fit_bootstrap(fitfunc_double, xdata, ydata, init, bds, yerr)
pfit1, perr1, residuals1, nfev1, master_list1 = fit_bootstrap(fitfunc_single, xdata, ydata, init, bds, yerr)
more_data = np.linspace(np.min(xdata), np.max(xdata), 1000)
real_func = fitfunc_double(pfit, more_data)
real_func1 = fitfunc_single(pfit1, more_data)
######## Saving Coefficients #########
A1 = pfit[0]
m1 = pfit[1]
s1 = pfit[2]
A2 = pfit[3]
m2 = pfit[4]
s2 = pfit[5]
A3 = pfit[6]
m3 = pfit[7]
s3 = pfit[8]
pecp = VEL - vc
m1p = m1 - vc
m2p = m2 - vc
m3p = m3 - vc
xdatap = xdata - vc
plt.figure(6)
plt.hist(pecp, binN, alpha=.5, label='data', color='skyblue')
xhmax = np.amax(pecp + 1500)
xhmin = np.amin(pecp - 1500)
xh = np.linspace(xhmin, xhmax, 50)
# yh1=(mlab.normpdf(xh, c[1], c[2]))
yh1 = np.abs(A1) * exp(-0.5 * (((xh - m1p) / (s1)) ** 2))
yh2 = np.abs(A2) * exp(-0.5 * (((xh - m2p) / (s2)) ** 2))
yh3 = np.abs(A3) * exp(-0.5 * (((xh - m3p) / (s3)) ** 2))
plt.plot(xh, yh1, color='b', linewidth=2)
plt.plot(xh, yh2, color='r', linewidth=2)
plt.plot(xh, yh3, color='g', linewidth=2)
plt.plot(xh, yh1 + yh2 + yh3, color='purple', linewidth=3)
# plt.errorbar(xdatap,y,xerr=wdith/2,ls='none', yerr=yerr,color='k',linewidth=2)
# plt.plot(xdatap, ydata,'.',color='k')
plt.ylim(0, np.max(ydata) + 2)
plt.xlabel('Peculiar Velocity (km/s)')
plt.ylabel('N$_{gal}$')
plt.text(-4800, 15, '$\mu_{2}$-$\mu_{1}$ = ' + str(int(m2 - m1)) + ' km/s')
plt.savefig(str(wdith) + "_1sigma_" + str(iters) + "_sig2_" + str(sig2) + "_hist.ps")
divi = -1800
memlow = np.array([[0 for x in range(2)] for y in range(1)])
memhigh = np.array([[0 for x in range(2)] for y in range(1)])
j = 0
k = 0
plt.show()
Sorry that this post is long but I am trying to simulate two dimensional Schrodinger equation in python using split-step method.
One dimensional problem of this equation has been explained in this post:
https://jakevdp.github.io/blog/2012/09/05/quantum-python/
I tried adding another dimension and modified the operators following the above post but I am confused as how to plot the psi function now that I added another dimension, here is my modified class equation by adding and extra dimension, I also modified the helper functions now that I added extra dimension:
import numpy as np
from scipy.fftpack import fft, ifft
class Schrodinger(object):
def __init__(self, x,y,psi_x0,psi_y0,V_x,V_y,k0=None, hbar=1, m=1, t0=0.0):
self.x,self.y,psi_x0,psi_y0,self.V_x,V_y=map(np.asarray(x,y,psi_x0,psi_y0,V_x,V_y))
N=self.x.size
assert self.x.shape==(N,)
assert self.y.shape==(N,)
assert psi_x0.shape==(N,)
assert self.V_x.shape==(N,)
assert self.V_y.shape==(N,)
self.hbar = hbar
self.m = m
self.t = t0
self.dt_ = None
self.N = len(x)
self.dx=self.x[1]-self.x[0]
self.dy=self.y[1]-self.y[0]
self.dk = 2 * np.pi / (self.N * self.dx)
if k0 == None:
self.k0 = -0.5 * self.N * self.dk
else:
self.k0 = k0
self.k = self.k0 + self.dk * np.arange(self.N)
self.psi_x = psi_x0
self.psi_y=psi_y0
self.compute_k_from_x()
self.compute_k_from_y()
self.x_evolve_half = None
self.x_evolve = None
self.y_evolve_half = None
self.y_evolve = None
self.k_evolve = None
self.psi_x_line = None
self.psi_y_line = None
self.psi_k_line = None
self.V_x_line = None
self.V_y_line = None
def _set_psi_x(self,psi_x):
self.psi_mode_x=(psi_x*np.exp(-1j*self.k[0]*self.x)*self.dx/np.sqrt(2*np.pi))
def _get_psi_x(self):
return (self.psi_mode_x*np.exp(1j*self.k[0])*np.sqrt(2*np.pi)/self.dx)
def _set_psi_y(self,psi_y):
self.psi_mode_y=(psi_y*np.exp(-1j*self.k[0]*self.y)*self.dy/np.sqrt(2*np.pi))
def _get_psi_y(self):
return (self.psi_mode_y*np.exp(1j*self.k[0])*np.sqrt(2*np.pi)/self.dy)
def _set_psi_k_x(self,psi_k_x):
self.psi_mode_k_x=psi_k_x*np.exp(1j*self.x[0]*self.dk*np.arange(self.N))
def _get_psi_k_x(self):
return self.psi_mode_k_x*np.exp(-1j*self.x[0]*self.dk*np.arange(self.N))
def _set_psi_k_y(self,psi_k_y):
self.psi_mode_k_y=psi_k_y*np.exp(1j*self.y[0]*self.dk*np.arange(self.N))
def _get_psi_k_y(self):
return self.psi_mode_k_y*np.exp(-1j*self.y[0]*self.dk*np.arange(self.N))
def _get_dt(self):
return self.dt_
def _set_dt(self,dt):
if dt!=self.dt_:
self.dt_=dt
self.x_evolve_half=np.exp(-0.5*1j*self.V_x/self.hbar*dt)
self.y_evolve_half=np.exp(-0.5*1j*self.V_y/self.hbar*dt)
self.x_evolve=self.x_evolve_half*self.x_evolve_half
self.y_evolve=self.y_evolve_half*self.y_evolve_half
self.k_evolve=np.exp(-0.5*1j*self.hbar/self.m*(self.k*self.k)*dt)
psi_x=property(_get_psi_x,_set_psi_x)
psi_y=property(_get_psi_y,_set_psi_y)
psi_k_x=property(_get_psi_k_x,_set_psi_k_x)
psi_k_y=property(_get_psi_k_y,_set_psi_k_y)
dz=property(_get_dt,_set_dt)
def compute_k_from_x(self):
self.psi_mode_k_x=fft(self.psi_mode_x)
def compute_k_from_y(self):
self.psi_mode_k_y=fft(self.psi_mode_y)
def compute_x_from_k(self):
self.psi_mode_x=ifft(self.psi_mode_k_x)
def compute_y_from_k(self):
self.psi_mode_y=ifft(self.psi_mode_k_y)
def time_step(self,dt,Nsteps=1):
self.dt=dt
if Nsteps>0:
self.psi_mode_x*=self.x_evolve_half
self.psi_mode_y*=self.y_evolve_half
for i in range(Nsteps-1):
self.compute_k_from_x()
self.compute_k_from_y()
self.psi_mode_k_x*=self.k_evolve
self.psi_mode_k_y*=self.k_evolve
self.compute_x_from_k()
self.compute_y_from_k()
self.psi_mode_x*=self.x_evolve
self.psi_mode_y*=self.y_evolve
self.compute_k_from_x()
self.compute_k_from_y()
self.psi_mode_k_x*=self.k_evolve
self.psi_mode_k_y*=self.k_evolve
self.compute_x_from_k()
self.psi_mode_x*=self.x_evolve_half
self.compute_y_from_k()
self.psi_mode_y*=self.y_evolve_half
self.compute_k_from_x()
self.compute_k_from_y()
self.t+=dt*Nsteps
def gauss_x(x, a, x0, k0):
return ((a*np.sqrt(np.pi))**(-0.5)* np.exp(-0.5*((x-x0)* 1./a)**2 +1j*x*k0))
def gauss_y(y, a, y0, k0):
return ((a*np.sqrt(np.pi))**(-0.5)* np.exp(-0.5*((y-y0)* 1./a)**2 +1j*y*k0))
def gauss_k_x(k,a,x0,k0):
return ((a/np.sqrt(np.pi))**0.5* np.exp(-0.5*(a*(k- k0))** 2- 1j*(k- k0)*x0))
def gauss_k_y(k,a,y0,k0):
return ((a/np.sqrt(np.pi))**0.5* np.exp(-0.5*(a*(k- k0))** 2- 1j*(k- k0)*y0))
def theta(x):
x = np.asarray(x)
y = np.zeros(x.shape)
y[x > 0] = 1.0
return y
def square_barrier(x, width, height):
return height * (theta(x) - theta(x - width))
dt = 0.01
N_steps = 50
t_max = 120
frames = int(t_max / float(N_steps * dt))
hbar = 1.0
m = 1.9
N = 2 ** 11
dx = 0.1
dy=0.1
x = dx * (np.arange(N) - 0.5 * N)
y = dy * (np.arange(N) - 0.5 * N)
V0 = 1.5
L = hbar / np.sqrt(2 * m * V0)
a = 3 * L
x0 = -60 * L
y0 = -60 * L
V_x = square_barrier(x, a, V0)
V_y = square_barrier(y, a, V0)
V_x[x < -98] = 1E6
V_x[x > 98] = 1E6
V_y[y < -98] = 1E6
V_y[y > 98] = 1E6
p0 = np.sqrt(2 * m * 0.2 * V0)
dp2 = p0 * p0 * 1./80
d = hbar / np.sqrt(2 * dp2)
k0 = p0 / hbar
v0 = p0 / m
psi_x0 = gauss_x(x, d, x0, k0)
psi_y0 = gauss_y(y, d, y0, k0)
S =Schrodinger(x=x,y=y,psi_x0=psi_x0,psi_y0=psi_y0,V_x=V,V_y=V_y,hbar=hbar,m=m,k0=-28)
the code for one-dimensional plot and the animation is as below:
from matplotlib import pyplot as pl
from matplotlib import animation
fig = pl.figure()
xlim = (-100, 100)
klim = (-5, 5)
ymin = 0
ymax = V0
ax1 = fig.add_subplot(211, xlim=xlim,
ylim=(ymin - 0.2 * (ymax - ymin),
ymax + 0.2 * (ymax - ymin)))
psi_x_line, = ax1.plot([], [], c='r', label=r'$|\psi(x)|$')
V_x_line, = ax1.plot([], [], c='k', label=r'$V(x)$')
center_line = ax1.axvline(0, c='k', ls=':',
label = r"$x_0 + v_0t$")
title = ax1.set_title("")
ax1.legend(prop=dict(size=12))
ax1.set_xlabel('$x$')
ax1.set_ylabel(r'$|\psi(x)|$')
ymin = abs(S.psi_k).min()
ymax = abs(S.psi_k).max()
ax2 = fig.add_subplot(212, xlim=klim,
ylim=(ymin - 0.2 * (ymax - ymin),
ymax + 0.2 * (ymax - ymin)))
psi_k_line, = ax2.plot([], [], c='r', label=r'$|\psi(k)|$')
p0_line1 = ax2.axvline(-p0 / hbar, c='k', ls=':', label=r'$\pm p_0$')
p0_line2 = ax2.axvline(p0 / hbar, c='k', ls=':')
mV_line = ax2.axvline(np.sqrt(2 * V0) / hbar, c='k', ls='--',
label=r'$\sqrt{2mV_0}$')
ax2.legend(prop=dict(size=12))
ax2.set_xlabel('$k$')
ax2.set_ylabel(r'$|\psi(k)|$')
V_x_line.set_data(S.x, S.V_x)
# Animate plot
def init():
psi_x_line.set_data([], [])
V_x_line.set_data([], [])
center_line.set_data([], [])
psi_k_line.set_data([], [])
title.set_text("")
return (psi_x_line, V_x_line, center_line, psi_k_line, title)
def animate(i):
S.time_step(dt, N_steps)
psi_x_line.set_data(S.x, 4 * abs(S.psi_x))
V_x_line.set_data(S.x, S.V_x)
center_line.set_data(2 * [x0 + S.t * p0 / m], [0, 1])
psi_k_line.set_data(S.k, abs(S.psi_k))
title.set_text("t = %.2f" % S.t)
return (psi_x_line, V_x_line, center_line, psi_k_line, title)
anim = animation.FuncAnimation(fig, animate, init_func=init,
frames=frames, interval=30, blit=True)
pl.show()
I am currently trying to plot a function which describes linear perturbation growth in cosmology for different world models. I would like to be able to have all the curves on the same set of axes, but am struggling with setting it up.
My aim is to plot this function D, with respect to z, but have multiple plots with varying density parameters ($\Omega$).
I have managed two solutions but both aren't working perfectly, the first is very inefficient (adding new functions for each set of parameters):
z = np.arange(0.0,10,0.1)
#density parameters
MOm = 1.0
MOv = 0.0
COm = 0.3
COv = 0.7
H0 = 70
def Mf(z):
A = (5/2)*MOm*(H0**2)
H = H0 * np.sqrt( MOm*((1+z)**3) + MOv )
return A * ((1+z)/(H**3))
def MF(z):
res = np.zeros_like(z)
for i,val in enumerate(z):
y,err = integrate.quad(Mf,val,np.inf)
res[i] = y
return res
def MD(z):
return (H0 * np.sqrt( MOm*((1+z)**3) + MOv )) * MF(z)
def Cf(z):
A = (5/2)*COm*(H0**2)
H = H0 * np.sqrt( COm*((1+z)**3) + COv )
return A * ((1+z)/(H**3))
def CF(z):
res = np.zeros_like(z)
for i,val in enumerate(z):
y,err = integrate.quad(Cf,val,np.inf)
res[i] = y
return res
def CD(z):
return (H0 * np.sqrt( COm*((1+z)**3) + COv )) * CF(z)
plt.plot(z,MD(z),label="Matter Dominated")
plt.plot(z,CD(z),label="Current Epoch")
So I tried to make it simpler with a for loop, but have been unable to work out how to add labels to each plot inside the loop:
Om = (1.0,0.3)
Ov = (0.0,0.7)
for param1,param2 in zip(Om,Ov):
def f(z):
A = (5/2)*param1*(H0**2)
H = H0 * np.sqrt( param1*((1+z)**3) + param2 )
return A * ((1+z)/(H**3))
def F(z):
res = np.zeros_like(z)
for i,val in enumerate(z):
y,err = integrate.quad(f,val,np.inf)
res[i] = y
return res
def D(z):
return (H0 * np.sqrt( param1*((1+z)**3) + param2 )) * F(z)
plt.plot(z,D(z))
Could someone please help explain an efficient method of doing so? Or how to add labels to plots on the fly with a for loop. Any help would be greatly appreciated.
So I tried to make it simpler with a for loop, but have been unable to work out how to add labels to each plot inside the loop
from scipy import integrate
from matplotlib import pyplot as plt
MOm = 1.0
MOv = 0.0
COm = 0.3
COv = 0.7
z = np.arange(0.0,10,0.1)
H0 = 70
Om = (1.0,0.3)
Ov = (0.0,0.7)
fig = plt.figure(1)
for param1,param2 in zip(Om,Ov):
def f(z):
A = (5/2)*param1*(H0**2)
H = H0 * np.sqrt( param1*((1+z)**3) + param2 )
return A * ((1+z)/(H**3))
def F(z):
res = np.zeros_like(z)
for i,val in enumerate(z):
y,err = integrate.quad(f,val,np.inf)
res[i] = y
return res
def D(z):
return (H0 * np.sqrt( param1*((1+z)**3) + param2 )) * F(z)
## Now define labels as you need and labels as follows:
plt.plot(z,D(z),label = 'Om: {}, Ov: {}'.format(param1,param2))
plt.legend()
You can create a label in the loop based on the two parameters using a predefined string which you format with the respective values.
label="Om {}, Ov {}".format(param1, param2)
In total, that would give:
import numpy as np
import scipy.integrate as integrate
import matplotlib.pyplot as plt
z = np.arange(0.0,10,0.1)
MOm = 1.0
MOv = 0.0
COm = 0.3
COv = 0.7
H0 = 70
Om = (1.0,0.3)
Ov = (0.0,0.7)
plt.figure(figsize=(3.8,2.4))
for param1,param2 in zip(Om,Ov):
def f(z):
A = (5/2)*param1*(H0**2)
H = H0 * np.sqrt( param1*((1+z)**3) + param2 )
return A * ((1+z)/(H**3))
def F(z):
res = np.zeros_like(z)
for i,val in enumerate(z):
y,err = integrate.quad(f,val,np.inf)
res[i] = y
return res
def D(z):
return (H0 * np.sqrt( param1*((1+z)**3) + param2 )) * F(z)
plt.plot(z,D(z), label="Om {}, Ov {}".format(param1, param2))
plt.legend()
plt.show()