Related
I am trying to replicate the below R code to estimate parameters using Maximum Likelihood method in Python.
I want to obtain the same results using both the codes, but my estimated values are different, I am not sure if both the codes are optimising the same parameters.
R-Code:
ll <- function (prop, numerator, denominator) {
return(
lgamma(denominator + 1) -
lgamma( numerator + 1) -
lgamma(denominator - numerator + 1) +
numerator * log(prop) + (denominator - numerator) * log(1 - prop)
)
}
compLogLike <- function(pvec){
return(sum(ll(pvec, dat$C, dat$N)))
}
fct_p_ll <- function(a, c0, c1){
xa_ <- exp(c0 + c1*c(20, a))
return(1 - exp((xa_[1]-xa_[2])/c1))
}
fct_ll <- function(x){
pv <- sapply(22.5+5*(0:8), FUN = fct_p_ll, c0 = x[1], c1 = x[2])
return(compLogLike(pv))
}
opt.res <- optim(par = c(-9.2, 0.07), fn = fct_ll, control = list(fnscale = -1.0), hessian = TRUE)
fisherInfo <- solve(-opt.res$hessian)
propSigma <- sqrt(diag(fisherInfo))
upper <- opt.res$par+1.96*propSigma
lower <- opt.res$par-1.96*propSigma
interval <- data.frame(val = opt.res$par, ci.low=lower, ci.up = upper)
Python Code:
def ll(prop, numerator, denominator):
print(prop, numerator, denominator)
if prop > 0:
value = (math.lgamma(denominator + 1) -
math.lgamma( numerator + 1) -
math.lgamma(denominator - numerator + 1) +
numerator * math.log(prop) + (denominator - numerator) * math.log(1 - prop))
return value
return 0
def compLogLike(pvec):
p = list(pvec)
c = list(df["C"])
n = list(df["N"])
compLog = 0
for idx, val in enumerate(p):
compLog += ll(p[idx],c[idx],n[idx])
print(compLog)
return compLog
def fct_p_ll(a,c0,c1):
val_list = [c1 * val for val in [20, a]]
xa_ = np.exp([c0 + val for val in val_list])
return 1 - np.exp((xa_[0] -xa_[1])/c1)
def fct_ll(x):
ages_1 = np.arange(22.5, 67.5 , 5)
pv = [fct_p_ll(a=val,c0=x[0],c1=x[1]) for val in ages_1]
return compLogLike(pv)
opt = minimize(fct_ll, [-9.2, 0.07], method='Nelder-Mead', hess=Hessian(lambda x: fct_ll(x,a)))
Any inputs would be really helpful.
I am trying to convert the following python def ´preproc_img´ to opencvsharp equivalent
def compute_norm_mat(base_width, base_height):
# normalization matrix used in image pre-processing
x = np.arange(base_width)
y = np.arange(base_height)
X, Y = np.meshgrid(x, y)
X = X.flatten()
Y = Y.flatten()
A = np.array([X*0+1, X, Y]).T
A_pinv = np.linalg.pinv(A)
return A, A_pinv
def preproc_img(img, A, A_pinv):
# compute image histogram
img_flat = img.flatten()
img_hist = np.bincount(img_flat, minlength = 256)
# cumulative distribution function
cdf = img_hist.cumsum()
cdf = cdf * (2.0 / cdf[-1]) - 1.0 # normalize
# histogram equalization
img_eq = cdf[img_flat]
diff = img_eq - np.dot(A, np.dot(A_pinv, img_eq))
# after plane fitting, the mean of diff is already 0
std = np.sqrt(np.dot(diff,diff)/diff.size)
if std > 1e-6:
diff = diff/std
return diff.reshape(img.shape)
What would the equivilent counterpart be in opencv or opencvsharp? A and A_pinv is calculated using compute_norm_mat.
I am stuck at:
private void preproc_img(Mat faceMat)
{
Cv2.EqualizeHist(faceMat, faceMat);
}
I am not sure yet if this is correct, but here is my first attempt.
private Mat preproc_img(Mat faceMat)
{
MatOfFloat hist = new MatOfFloat();
Cv2.CalcHist(new[] { faceMat }, new[] { 0 }, null, hist, 1, new[] { 256 }, new float[][] { new float[] { 0, 256 } });
Mat cdf = cumsum(hist);
cdf = cdf * (2.0 / cdf.At<float>(cdf.Rows - 1, 0)) - 1.0; // normalize
var cdfidx = cdf.GetGenericIndexer<float>();
Mat img_eq = EqualizeHist(faceMat, cdfidx);
Mat diff = (img_eq.Reshape(0, 64 * 64) - (A * (A_pinv * img_eq.Reshape(0, 64 * 64))));
var std = Math.Sqrt(diff.Dot(diff) / 64 / 64);
if (std > 1e-6)
diff = diff / std;
return diff.Reshape(0, 64);
}
private static Mat EqualizeHist(Mat faceMat, Mat.Indexer<float> cdfidx)
{
var img_eq = new Mat();
faceMat.ConvertTo(img_eq, MatType.CV_32FC1);
var idx = img_eq.GetGenericIndexer<float>();
for (var r = 0; r < img_eq.Rows; r++)
{
for (var c = 0; c < img_eq.Cols; c++)
{
idx[r, c] = cdfidx[(int)idx[r, c], 0];
}
}
return img_eq;
}
private static MatOfFloat cumsum(MatOfFloat hist)
{
var cdf = hist.Clone();
var indexer = cdf.GetIndexer();
var cumsum = 0.0f;
for (var i = 0; i < hist.Rows; i++)
{
cumsum += indexer[i, 0];
indexer[i,0] = cumsum;
}
return cdf;
}
public void initializeA()
{
MatOfInt X = new MatOfInt();
MatOfInt Y = new MatOfInt();
meshgrid(new MatOfInt(new int[] {1,64 },Enumerable.Range(0,64).ToArray()), new MatOfInt(new int[] { 1, 64 }, Enumerable.Range(0, 64).ToArray()), X, Y);
X = X.Reshape(1);
Y = Y.Reshape(1);
Console.WriteLine(X);
Console.WriteLine(Y);
A = new Mat();
A.PushBack(Mat.Ones(1, X.Cols,MatType.CV_32SC1));
A.PushBack(X);
A.PushBack(Y);
A = A.T();
A_pinv = A.Clone();
A.ConvertTo(A, MatType.CV_32FC1);
Cv2.Invert(A, A_pinv,DecompTypes.SVD);
}
I have the following code in C++ that uses the Eigen library, need help to translate to python (numpy)
Initialization
double b = 20.0;
Eigen::Vector3d C(1.0/10.2, 1.0/10.2, 1/30);
Eigen::MatrixXd U(5200, 3);
int i = 0;
for (double x = 10.2/2.0; x < 200; x += 10) {
for (double y = 10.2/2.0; y < 200; y += 10) {
for (double t = 0; t <= 360; t += 30) {
U(i, 0) = x;
U(i, 1) = y;
U(i, 2) = psi;
i += 1;
}
}
}
Function:
Eigen::VectorXd operator()(const Eigen::VectorXd& s) {
Eigen::VectorXd p(length());
p(0) = s[0];
p(1) = s[1];
p(2) = s[2];
p(3) = s[3];
for (int i = 0; i < U.rows(); i++) {
p(i + 4) = b*exp(-0.5*(s.tail(U.cols()) - U.row(i).transpose()).dot(C*(s.tail(U.cols())
- U.row(i).transpose())));
if (p(i + 4) < 0.1) {
p(i + 4) = 0;
}
}
return p;
}
Python version
Initialization:
my_x = 10.2/2.0
my_y = 10.2/2.0
my_p = 0
xx = []
while my_x < 200:
xx.append(my_x)
my_x += 10
yy = []
while my_y < 200:
yy.append(my_y)
my_y += 10
pps = []
while my_psi <= 360:
pps.append(my_p)
my_p+=30
U =[]
for x in xx:
for y in yy:
for p in pps:
U.append([x,y,p])
U = numpy.matrix(U)
C = numpy.array([1.0/10.2, 1.0/10.2, 1.0/30.0])
b = 20.0
The Function
Instead of operator() I will call the function doSomething()
def doSomething(s): # Where s is a numpy array (1-d vector)
p[0:4] = s[0:4]
for i in range (U.shape[0]):
s_dash = -0.5*(s - U[i].T)
s_ddash = C*s
s_dddash = s_dash.dot(s_ddash) - U[i].T
p[i+4] = b * numpy.exp(s_dddash)
if p[i+4] < 0.1: p[i+4] = 0
What I am confused:
In the C++ implementation, I think p[i+4] is supposed to be a single value
In my python version, I get a p[i+4] as square matrix
Each p[i+4] is a zero matrix.
I am unable to decipher my mistake. Please help!
I extracted the contours of an image, that you can see here:
However, it has some noise.
How can I smooth the noise? I did a close up to make clearer what I want to meant
Original image that I've used:
Code:
rMaskgray = cv2.imread('redmask.jpg', cv2.CV_LOAD_IMAGE_GRAYSCALE)
(thresh, binRed) = cv2.threshold(rMaskgray, 50, 255, cv2.THRESH_BINARY)
Rcontours, hier_r = cv2.findContours(binRed,cv2.RETR_CCOMP,cv2.CHAIN_APPROX_SIMPLE)
r_areas = [cv2.contourArea(c) for c in Rcontours]
max_rarea = np.max(r_areas)
CntExternalMask = np.ones(binRed.shape[:2], dtype="uint8") * 255
for c in Rcontours:
if(( cv2.contourArea(c) > max_rarea * 0.70) and (cv2.contourArea(c)< max_rarea)):
cv2.drawContours(CntExternalMask,[c],-1,0,1)
cv2.imwrite('contour1.jpg', CntExternalMask)
Try an upgrade to OpenCV 3.1.0. After some code adaptations for the new version as shown below, I tried it out with OpenCV version 3.1.0 and did not see any of the effects you are describing.
import cv2
import numpy as np
print cv2.__version__
rMaskgray = cv2.imread('5evOn.jpg', 0)
(thresh, binRed) = cv2.threshold(rMaskgray, 50, 255, cv2.THRESH_BINARY)
_, Rcontours, hier_r = cv2.findContours(binRed,cv2.RETR_CCOMP,cv2.CHAIN_APPROX_SIMPLE)
r_areas = [cv2.contourArea(c) for c in Rcontours]
max_rarea = np.max(r_areas)
CntExternalMask = np.ones(binRed.shape[:2], dtype="uint8") * 255
for c in Rcontours:
if(( cv2.contourArea(c) > max_rarea * 0.70) and (cv2.contourArea(c)< max_rarea)):
cv2.drawContours(CntExternalMask,[c],-1,0,1)
cv2.imwrite('contour1.jpg', CntExternalMask)
I don't know if is it ok to provide Java code - but I implemented Gaussian smoothing for openCV contour. Logic and theory is taken from here https://www.morethantechnical.com/2012/12/07/resampling-smoothing-and-interest-points-of-curves-via-css-in-opencv-w-code/
package CurveTools;
import org.apache.log4j.Logger;
import org.opencv.core.Mat;
import org.opencv.core.MatOfPoint;
import org.opencv.core.Point;
import java.util.ArrayList;
import java.util.List;
import static org.opencv.core.CvType.CV_64F;
import static org.opencv.imgproc.Imgproc.getGaussianKernel;
class CurveSmoother {
private double[] g, dg, d2g, gx, dx, d2x;
private double gx1, dgx1, d2gx1;
public double[] kappa, smoothX, smoothY;
public double[] contourX, contourY;
/* 1st and 2nd derivative of 1D gaussian */
void getGaussianDerivs(double sigma, int M) {
int L = (M - 1) / 2;
double sigma_sq = sigma * sigma;
double sigma_quad = sigma_sq * sigma_sq;
dg = new double[M];
d2g = new double[M];
g = new double[M];
Mat tmpG = getGaussianKernel(M, sigma, CV_64F);
for (double i = -L; i < L + 1.0; i += 1.0) {
int idx = (int) (i + L);
g[idx] = tmpG.get(idx, 0)[0];
// from http://www.cedar.buffalo.edu/~srihari/CSE555/Normal2.pdf
dg[idx] = -i * g[idx] / sigma_sq;
d2g[idx] = (-sigma_sq + i * i) * g[idx] / sigma_quad;
}
}
/* 1st and 2nd derivative of smoothed curve point */
void getdX(double[] x, int n, double sigma, boolean isOpen) {
int L = (g.length - 1) / 2;
gx1 = dgx1 = d2gx1 = 0.0;
for (int k = -L; k < L + 1; k++) {
double x_n_k;
if (n - k < 0) {
if (isOpen) {
//open curve - mirror values on border
x_n_k = x[-(n - k)];
} else {
//closed curve - take values from end of curve
x_n_k = x[x.length + (n - k)];
}
} else if (n - k > x.length - 1) {
if (isOpen) {
//mirror value on border
x_n_k = x[n + k];
} else {
x_n_k = x[(n - k) - x.length];
}
} else {
x_n_k = x[n - k];
}
gx1 += x_n_k * g[k + L]; //gaussians go [0 -> M-1]
dgx1 += x_n_k * dg[k + L];
d2gx1 += x_n_k * d2g[k + L];
}
}
/* 0th, 1st and 2nd derivatives of whole smoothed curve */
void getdXcurve(double[] x, double sigma, boolean isOpen) {
gx = new double[x.length];
dx = new double[x.length];
d2x = new double[x.length];
for (int i = 0; i < x.length; i++) {
getdX(x, i, sigma, isOpen);
gx[i] = gx1;
dx[i] = dgx1;
d2x[i] = d2gx1;
}
}
/*
compute curvature of curve after gaussian smoothing
from "Shape similarity retrieval under affine transforms", Mokhtarian & Abbasi 2002
curvex - x position of points
curvey - y position of points
kappa - curvature coeff for each point
sigma - gaussian sigma
*/
void computeCurveCSS(double[] curvex, double[] curvey, double sigma, boolean isOpen) {
int M = (int) Math.round((10.0 * sigma + 1.0) / 2.0) * 2 - 1;
assert (M % 2 == 1); //M is an odd number
getGaussianDerivs(sigma, M);//, g, dg, d2g
double[] X, XX, Y, YY;
getdXcurve(curvex, sigma, isOpen);
smoothX = gx.clone();
X = dx.clone();
XX = d2x.clone();
getdXcurve(curvey, sigma, isOpen);
smoothY = gx.clone();
Y = dx.clone();
YY = d2x.clone();
kappa = new double[curvex.length];
for (int i = 0; i < curvex.length; i++) {
// Mokhtarian 02' eqn (4)
kappa[i] = (X[i] * YY[i] - XX[i] * Y[i]) / Math.pow(X[i] * X[i] + Y[i] * Y[i], 1.5);
}
}
/* find zero crossings on curvature */
ArrayList<Integer> findCSSInterestPoints() {
assert (kappa != null);
ArrayList<Integer> crossings = new ArrayList<>();
for (int i = 0; i < kappa.length - 1; i++) {
if ((kappa[i] < 0.0 && kappa[i + 1] > 0.0) || kappa[i] > 0.0 && kappa[i + 1] < 0.0) {
crossings.add(i);
}
}
return crossings;
}
public void polyLineSplit(MatOfPoint pl) {
contourX = new double[pl.height()];
contourY = new double[pl.height()];
for (int j = 0; j < contourX.length; j++) {
contourX[j] = pl.get(j, 0)[0];
contourY[j] = pl.get(j, 0)[1];
}
}
public MatOfPoint polyLineMerge(double[] xContour, double[] yContour) {
assert (xContour.length == yContour.length);
MatOfPoint pl = new MatOfPoint();
List<Point> list = new ArrayList<>();
for (int j = 0; j < xContour.length; j++)
list.add(new Point(xContour[j], yContour[j]));
pl.fromList(list);
return pl;
}
MatOfPoint smoothCurve(MatOfPoint curve, double sigma) {
int M = (int) Math.round((10.0 * sigma + 1.0) / 2.0) * 2 - 1;
assert (M % 2 == 1); //M is an odd number
//create kernels
getGaussianDerivs(sigma, M);
polyLineSplit(curve);
getdXcurve(contourX, sigma, false);
smoothX = gx.clone();
getdXcurve(contourY, sigma, false);
smoothY = gx;
Logger.getRootLogger().info("Smooth curve len: " + smoothX.length);
return polyLineMerge(smoothX, smoothY);
}
}
I'm trying to generate an infinite map, as such. I'm doing this in Python, and I can't get the noise libraries to correctly work (they don't seem to ever find my VS2010, and doing it in raw Python would be way too slow). As such, I'm trying to use the Diamond-Square Algorithm.
Would it be possible, in some way, to make this technically infinite?
If not, should I just go back to attempting to get one of the Python noise bindings to work?
This can be done. Divide up your landscape into "tiles", and apply the midpoint displacement algorithm (as I prefer to call it) within each tile.
Each tile must be big enough so that the height at one corner does not significantly depend on the height in another. In that way, you can create and destroy tiles on the fly, setting the height at newly appearing corners to an independent random value.
That value (and the randomness within the tile as well) must be seeded from the tile's position, so that you get the same tile each time.
The latest version of the noise module (at http://pypi.python.org/pypi/noise/1.0b3) mentions that it "fixed problems compiling with Visual C++ on Windows" - you might want to try it again. It installs and works properly for me (Python 2.7.1, MinGW, Windows 7).
If you arrange your tiles in an x,y grid and seed the random number generator for each tile like random.seed((x,y)), then every time you return to the same patch of world it will re-create the same terrain.
With the diamond-square algorithm, two sides of each tile depend on the adjoining tiles; however the dependence does not propagate all the way across the tile. If you let each tile depend on the tiles preceding it (ie above and to the left) and write a create_fake_tile function which assumes that all the preceding-tile values are 0, you get a "bad" tile in which the right column and bottom row are the correct values on which the next tile depends. If you draw each screen starting with the tile row and column preceding the first row and column on screen, then the visible portion of your world will be correct.
Can you apply midpoint displacement from the bottom up? Say you're working on a discrete grid, and you want to generate an MxN region. Get yourself a weighting function w(i). Start by applying a random displacement with weight w(0) to each point. Then apply a random displacement with weight w(1) to every other point, and propagate the displacement to intervening points. Then do every fourth point with w(2), again propagating. You can now generate a grid of any size, without having any starting assumption about the size.
If there's some N for which w(i > N) = 0, then you can stop generating when you hit it - which is rather important if you want the generation to ever terminate! You probably want a w function that starts at 1, increases to some value, and then falls off to zero; the increasing bit models the power-law roughness of terrain up to 100-km or so scales, and the decreasing bit models the fact that whole planets are more or less spherical. If you were doing Mars rather than Earth, you'd want w(i) to go further, because of the Tharsis bulge.
Now replace the random function with a random-looking but deterministic function of the point coordinates (feed the coordinates into a SHA1 hash, for example). Now, whenever you generate some particular part of the grid, it will look the same.
You should be able to do diamond-square in much the same way as this; you just need to alternate the shape of the displacements.
I solved the Diamond Squared algorithm for infinite landscapes.
function diamondSquaredMap(x, y, width, height, iterations) {
var map = fieldDiamondSquared(x, y, x+width, y+height, iterations);
var maxdeviation = getMaxDeviation(iterations);
for (var j = 0; j < width; j++) {
for (var k = 0; k < height; k++) {
map[j][k] = map[j][k] / maxdeviation;
map[j][k] = (map[j][k] + 1) / 2;
}
}
return map;
function create2DArray(d1, d2) {
var x = new Array(d1),
i = 0,
j = 0;
for (i = 0; i < d1; i += 1) {
x[i] = new Array(d2);
}
return x;
}
function fieldDiamondSquared(x0, y0, x1, y1, iterations) {
if (x1 < x0) { return null; }
if (y1 < y0) { return null; }
var finalwidth = x1 - x0;
var finalheight = y1 - y0;
var finalmap = create2DArray(finalwidth, finalheight);
if (iterations === 0) {
for (var j = 0; j < finalwidth; j++) {
for (var k = 0; k < finalheight; k++) {
finalmap[j][k] = displace(iterations,x0+j,y0+k) ;
}
}
return finalmap;
}
var ux0 = Math.floor(x0 / 2) - 1;
var uy0 = Math.floor(y0 / 2) - 1;
var ux1 = Math.ceil(x1 / 2) + 1;
var uy1 = Math.ceil(y1 / 2) + 1;
var uppermap = fieldDiamondSquared(ux0, uy0, ux1, uy1, iterations-1);
var uw = ux1 - ux0;
var uh = uy1 - uy0;
var cx0 = ux0 * 2;
var cy0 = uy0 * 2;
var cw = uw*2-1;
var ch = uh*2-1;
var currentmap = create2DArray(cw,ch);
for (var j = 0; j < uw; j++) {
for (var k = 0; k < uh; k++) {
currentmap[j*2][k*2] = uppermap[j][k];
}
}
var xoff = x0 - cx0;
var yoff = y0 - cy0;
for (var j = 1; j < cw-1; j += 2) {
for (var k = 1; k < ch-1; k += 2) {
currentmap[j][k] = ((currentmap[j - 1][k - 1] + currentmap[j - 1][k + 1] + currentmap[j + 1][k - 1] + currentmap[j + 1][k + 1]) / 4) + displace(iterations,cx0+j,cy0+k);
}
}
for (var j = 1; j < cw-1; j += 2) {
for (var k = 2; k < ch-1; k += 2) {
currentmap[j][k] = ((currentmap[j - 1][k] + currentmap[j + 1][k] + currentmap[j][k - 1] + currentmap[j][k + 1]) / 4) + displace(iterations,cx0+j,cy0+k);
}
}
for (var j = 2; j < cw-1; j += 2) {
for (var k = 1; k < ch-1; k += 2) {
currentmap[j][k] = ((currentmap[j - 1][k] + currentmap[j + 1][k] + currentmap[j][k - 1] + currentmap[j][k + 1]) / 4) + displace(iterations,cx0+j,cy0+k);
}
}
for (var j = 0; j < finalwidth; j++) {
for (var k = 0; k < finalheight; k++) {
finalmap[j][k] = currentmap[j+xoff][k+yoff];
}
}
return finalmap;
}
// Random function to offset
function displace(iterations, x, y) {
return (((PRH(iterations,x,y) - 0.5)*2)) / (iterations+1);
}
function getMaxDeviation(iterations) {
var dev = 0.5 / (iterations+1);
if (iterations <= 0) return dev;
return getMaxDeviation(iterations-1) + dev;
}
//This function returns the same result for given values but should be somewhat random.
function PRH(iterations,x,y) {
var hash;
x &= 0xFFF;
y &= 0xFFF;
iterations &= 0xFF;
hash = (iterations << 24);
hash |= (y << 12);
hash |= x;
var rem = hash & 3;
var h = hash;
switch (rem) {
case 3:
hash += h;
hash ^= hash << 32;
hash ^= h << 36;
hash += hash >> 22;
break;
case 2:
hash += h;
hash ^= hash << 22;
hash += hash >> 34;
break;
case 1:
hash += h;
hash ^= hash << 20;
hash += hash >> 2;
}
hash ^= hash << 6;
hash += hash >> 10;
hash ^= hash << 8;
hash += hash >> 34;
hash ^= hash << 50;
hash += hash >> 12;
return (hash & 0xFFFF) / 0xFFFF;
}
};
//CANVAS CONTROL
window.onload = terrainGeneration;
function terrainGeneration() {
"use strict";
var mapDimension,
roughness,
iterations,
mapCanvas = document.getElementById('canvas');
var update = document.getElementById('update');
var xpos = 0;
var ypos = 0;
mapDimension = 512;
mapCanvas.width = mapDimension;
mapCanvas.height = mapDimension;
var updatefunction = function() {
var elIterations = document.getElementById('iterations');
iterations = parseInt(elIterations.value, 10);
iterations = iterations || 6;
MoveMap(10,0);
}
update.onclick = updatefunction;
updatefunction();
function MoveMap(dx, dy) {
xpos -= dx;
ypos -= dy;
var map = diamondSquaredMap(xpos, ypos, mapDimension, mapDimension, iterations);
drawMap(mapDimension, "canvas", map);
}
var m = this;
m.map = document.getElementById("canvas");
m.width = mapDimension;
m.height = mapDimension;
m.hoverCursor = "auto";
m.dragCursor = "url(), default";
m.scrollTime = 300;
m.mousePosition = new Coordinate;
m.mouseLocations = [];
m.velocity = new Coordinate;
m.mouseDown = false;
m.timerId = -1;
m.timerCount = 0;
m.viewingBox = document.createElement("div");
m.viewingBox.style.cursor = m.hoverCursor;
m.map.parentNode.replaceChild(m.viewingBox, m.map);
m.viewingBox.appendChild(m.map);
m.viewingBox.style.overflow = "hidden";
m.viewingBox.style.width = m.width + "px";
m.viewingBox.style.height = m.height + "px";
m.viewingBox.style.position = "relative";
m.map.style.position = "absolute";
function drawMap(size, canvasId, mapData) {
var canvas = document.getElementById(canvasId),
ctx = canvas.getContext("2d"),
x = 0,
y = 0,
colorFill,
img = ctx.createImageData(canvas.height, canvas.width);
for (x = 0; x < size; x++) {
for (y = 0; y < size; y++) {
colorFill = {r: 0, g: 0, b: 0};
var standardShade = Math.floor(mapData[x][y] * 250);
colorFill = {r: standardShade, g: standardShade, b: standardShade};
var pData = (x + (y * canvas.width)) * 4;
img.data[pData] = colorFill.r;
img.data[pData + 1] = colorFill.g;
img.data[pData + 2] = colorFill.b;
img.data[pData + 3] = 255;
}
}
ctx.putImageData(img, 0, 0);
}
function AddListener(element, event, f) {
if (element.attachEvent) {
element["e" + event + f] = f;
element[event + f] = function() {
element["e" + event + f](window.event)
};
element.attachEvent("on" + event, element[event + f])
} else
element.addEventListener(event, f, false)
}
function Coordinate(startX, startY) {
this.x = startX;
this.y = startY;
}
var MouseMove = function(b) {
var e = b.clientX - m.mousePosition.x;
var d = b.clientY - m.mousePosition.y;
MoveMap(e, d);
m.mousePosition.x = b.clientX;
m.mousePosition.y = b.clientY
};
/**
* mousedown event handler
*/
AddListener(m.viewingBox, "mousedown", function(e) {
m.viewingBox.style.cursor = m.dragCursor;
// Save the current mouse position so we can later find how far the
// mouse has moved in order to scroll that distance
m.mousePosition.x = e.clientX;
m.mousePosition.y = e.clientY;
// Start paying attention to when the mouse moves
AddListener(document, "mousemove", MouseMove);
m.mouseDown = true;
event.preventDefault ? event.preventDefault() : event.returnValue = false;
});
/**
* mouseup event handler
*/
AddListener(document, "mouseup", function() {
if (m.mouseDown) {
var handler = MouseMove;
if (document.detachEvent) {
document.detachEvent("onmousemove", document["mousemove" + handler]);
document["mousemove" + handler] = null;
} else {
document.removeEventListener("mousemove", handler, false);
}
m.mouseDown = false;
if (m.mouseLocations.length > 0) {
var clickCount = m.mouseLocations.length;
m.velocity.x = (m.mouseLocations[clickCount - 1].x - m.mouseLocations[0].x) / clickCount;
m.velocity.y = (m.mouseLocations[clickCount - 1].y - m.mouseLocations[0].y) / clickCount;
m.mouseLocations.length = 0;
}
}
m.viewingBox.style.cursor = m.hoverCursor;
});
}
<html><head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Canvas Terrain Generator</title>
<link rel="stylesheet" href="terrain.css" type="text/css">
<style type="text/css"></style><style type="text/css"></style></head>
<body>
Click and Pan.<br>
<div style="cursor: auto; overflow: hidden; width: 512px; height: 512px; position: relative;"><canvas id="canvas" width="512" height="512" style="position: absolute;"></canvas></div>
<br>
<form>
<fieldset>
<legend>Height Map Properties</legend>
<ol class="options">
<li>
<input type="text" name="iterations" id="iterations">
<label for="iterations">
Iterations(6)
</label>
</li>
</ol>
</fieldset>
<input type="button" value="Update" id="update">
</form>
</body></html>
https://jsfiddle.net/Tatarize/1Lrj3s2v/3/
Click and Drag jsfiddle
And actually found this question doing my due diligence. Yes. Though the answers provided here are mostly wrong it totally can be done. Conceptually what you need to do is view each iteration of the algorithm as an infinite field and the base case as an infinite field of perfectly random numbers. So each iteration is a diamond squared version of the previous one.
And to solve a range of say tile [100-200][100-200] at iteration 7, what you need is the entire block half that size (~a quarter that size h*w) at iteration 6 plus one extra edge on each side. So if you have a function that solves for a given tile:
getTerrain(x0,y0,x1,y1,iteration)... you can solve this for that tile if you have [49,101][49,101] at iteration 6. Then you simply apply diamond squared everywhere you can which won't work at the edges but will work everywhere else, and provide you with exactly enough data to solve for the tile [100-200][100-200] at iteration 7.
To get that tile at iteration 6 it will request [23-52][23-52] from iteration 5. And this will continue until iteration 0 just gives you [-1,3][-1,3] which will be 16 perfectly random values. If you requested a tile so large that iteration 0 didn't yet reach that size and position, you'll just need a different sliver which is fine because you're just making them up anyway.
In this way you get rid of the seeding step completely, simplify the algorithm, make it infinite, make it take a reasonable memory footprint. Using a deterministic pseudorandom number hashed from the coords and it will let you generate and regenerate the identical tiles on the fly, because you actually generated the upper lower iterations and just did so in a focused manner.
My blog has more information on it,
http://godsnotwheregodsnot.blogspot.com/2013/11/field-diamond-squared-fractal-terrain.html
In reality most of the complication of the algorithm comes from having the base case four points in a loop, as this is not close to the simplest case. And it's apparently escaped most people that you could have even simplified that by doing 1 point in a loop (though this is still pointlessly complex). Or anything that makes the algorithm seem to have at least 4x4 points. You could even start with 4x4 points iterate once, drop any row or column with an unknown value (all the edges), then have a 5x5 block, then a 7x7 block then an 11x11 block... (2n-3) x (2n-3).
In short, if you have an infinite field for your base case, you can actually have an infinite field, the iterations just determine how blended your stuff is. And if you use something deterministic for the pseudorandom injected offset, you pretty much have a very quick infinite landscape generator.
and here's a demonstration of it in javascript,
http://tatarize.nfshost.com/FieldDiamondSquare.htm
Here's an implementation in javascript. It simply gives you a view of the correct field at that iteration, position, and size. The above linked example uses this code in a movable canvas. It stores no data and recalculates each frame.
function diamondSquaredMap(x, y, width, height, iterations) {
var map = fieldDiamondSquared(x, y, x+width, y+height, iterations);
var maxdeviation = getMaxDeviation(iterations);
for (var j = 0; j < width; j++) {
for (var k = 0; k < height; k++) {
map[j][k] = map[j][k] / maxdeviation;
}
}
return map;
function create2DArray(d1, d2) {
var x = new Array(d1),
i = 0,
j = 0;
for (i = 0; i < d1; i += 1) {
x[i] = new Array(d2);
}
return x;
}
function fieldDiamondSquared(x0, y0, x1, y1, iterations) {
if (x1 < x0) { return null; }
if (y1 < y0) { return null; }
var finalwidth = x1 - x0;
var finalheight = y1 - y0;
var finalmap = create2DArray(finalwidth, finalheight);
if (iterations === 0) {
for (var j = 0; j < finalwidth; j++) {
for (var k = 0; k < finalheight; k++) {
finalmap[j][k] = displace(iterations,x0+j,y0+k) ;
}
}
return finalmap;
}
var ux0 = Math.floor(x0 / 2) - 1;
var uy0 = Math.floor(y0 / 2) - 1;
var ux1 = Math.ceil(x1 / 2) + 1;
var uy1 = Math.ceil(y1 / 2) + 1;
var uppermap = fieldDiamondSquared(ux0, uy0, ux1, uy1, iterations-1);
var uw = ux1 - ux0;
var uh = uy1 - uy0;
var cx0 = ux0 * 2;
var cy0 = uy0 * 2;
var cw = uw*2-1;
var ch = uh*2-1;
var currentmap = create2DArray(cw,ch);
for (var j = 0; j < uw; j++) {
for (var k = 0; k < uh; k++) {
currentmap[j*2][k*2] = uppermap[j][k];
}
}
var xoff = x0 - cx0;
var yoff = y0 - cy0;
for (var j = 1; j < cw-1; j += 2) {
for (var k = 1; k < ch-1; k += 2) {
currentmap[j][k] = ((currentmap[j - 1][k - 1] + currentmap[j - 1][k + 1] + currentmap[j + 1][k - 1] + currentmap[j + 1][k + 1]) / 4) + displace(iterations,cx0+j,cy0+k);
}
}
for (var j = 1; j < cw-1; j += 2) {
for (var k = 2; k < ch-1; k += 2) {
currentmap[j][k] = ((currentmap[j - 1][k] + currentmap[j + 1][k] + currentmap[j][k - 1] + currentmap[j][k + 1]) / 4) + displace(iterations,cx0+j,cy0+k);
}
}
for (var j = 2; j < cw-1; j += 2) {
for (var k = 1; k < ch-1; k += 2) {
currentmap[j][k] = ((currentmap[j - 1][k] + currentmap[j + 1][k] + currentmap[j][k - 1] + currentmap[j][k + 1]) / 4) + displace(iterations,cx0+j,cy0+k);
}
}
for (var j = 0; j < finalwidth; j++) {
for (var k = 0; k < finalheight; k++) {
finalmap[j][k] = currentmap[j+xoff][k+yoff];
}
}
return finalmap;
}
// Random function to offset
function displace(iterations, x, y) {
return (((PRH(iterations,x,y) - 0.5)*2)) / (iterations+1);
}
function getMaxDeviation(iterations) {
var dev = 0.5 / (iterations+1);
if (iterations <= 0) return dev;
return getMaxDeviation(iterations-1) + dev;
}
//This function returns the same result for given values but should be somewhat random.
function PRH(iterations,x,y) {
var hash;
x &= 0xFFF;
y &= 0xFFF;
iterations &= 0xFF;
hash = (iterations << 24);
hash |= (y << 12);
hash |= x;
var rem = hash & 3;
var h = hash;
switch (rem) {
case 3:
hash += h;
hash ^= hash << 32;
hash ^= h << 36;
hash += hash >> 22;
break;
case 2:
hash += h;
hash ^= hash << 22;
hash += hash >> 34;
break;
case 1:
hash += h;
hash ^= hash << 20;
hash += hash >> 2;
}
hash ^= hash << 6;
hash += hash >> 10;
hash ^= hash << 8;
hash += hash >> 34;
hash ^= hash << 50;
hash += hash >> 12;
return (hash & 0xFFFF) / 0xFFFF;
}
};
Updated to add, I went on from this, and made my own noise algorithm based on the same scoped field algorithm here, Here's the Jsfiddle for it.
https://jsfiddle.net/rkdzau7o/
You can click and drag the noise around.