Im trying some multiprocessing as the example code below, it should print message from 01,02,03,hello world,04,05, but it went 01,02,01,05,03,hello world,04,05 instead, why 02 back to 01 then jump to 05, back to 03, why am i missing here, how to let it run by order, Thank you!
from multiprocessing import *
# large data/complex use multiprocessing , else use odinary function
q = Queue() # comm between parent n child proces
def f1(x,q):
print('03')
x = x + " world"
q.put(x)
def main_f():
print('01')
mp = Process(target=f1,args=("hello",q,))
if __name__ == '__main__': # only happen once, else ex 4 process to 16 to 64 endless
print('02')
mp.start()
print(q.get())
mp.join()
print('04')
main_f()
print('05')
I expect the message print from 01,02,03,hello world,04,05
When you do multiprocessing under a platform that uses the spawn method to create new processes, then any code at global scope that is not within a if __name__ == '__main__': block will first be executed by the child process in order to initialize its storage prior to invoking the worker function f1.
In your posted code, when the child process is created it will therefore execute the following statements in order:
from multiprocessing import *
q = Queue() # create global queue
def f1(x, q): # create function definition
def main_f(): # create function definition
main_f() # call main_f
print('05')
In reality the only statement that needs to be executed by the child process before the worker method f1 is invoked is statement #3 above, which defines the worker function for the child process.
Statement 1 imports a package not used by your child process. Doing this does not prevent the program from running correctly but Python is spending time performing animport that is not used.
Statement #2 needlessly creates a new queue instance in the child process distinct from the one created in the main process. It would be disastrous if your child process used this since it would be putting elements on a different queue than the one the main process is getting from. Fortunately, function f1 is not referencing and using the queue that is passed as an argument.
Statement #4 defines a function not used by the child process. It doesn't prevent the program from running but is wasteful.
Statement #5 invokes main_f. This is where your troubles begins. All the code within main_f that is not within a if __name__ == '__main__': block will get executed immediately before your worker function is invoked. This is what is causing an extra '01' to be printed.
Statement #6 likewise is what is causing an extra '05' to be printed.
At the minimum to get your program working correctly, your code should therefore be:
from multiprocessing import *
def f1(x,q):
print('03')
x = x + " world"
q.put(x)
def main_f():
# large data/complex use multiprocessing, else use ordinary function
q = Queue() # comm between parent n child process
print('01')
mp = Process(target=f1,args=("hello",q,))
print('02')
mp.start()
print(q.get())
mp.join()
print('04')
if __name__ == '__main__':
main_f()
If we want to eliminate all possible inefficiencies, i.e. prevent unnecessary statements from being executed when the child process is initialized, then:
def f1(x,q):
print('03')
x = x + " world"
q.put(x)
if __name__ == '__main__':
from multiprocessing import *
def main_f():
# large data/complex use multiprocessing, else use ordinary function
q = Queue() # comm between parent n child process
print('01')
mp = Process(target=f1,args=("hello",q,))
print('02')
mp.start()
print(q.get())
mp.join()
print('04')
main_f()
Related
So I'm using multiprocessing pool with 3 threads, to run a function that does a certain job, and I have a variable defined outside this function which equals 0, and every time the function do it job it should add 1 to that variable and print it, but every thread uses a separated variable
here is the code:
from multiprocessing import Pool
number_of_doe_jobs = 0
def thefunction():
global number_of_doe_jobs
# JOB CODE GOES HERE
number_of_doe_jobs+=1
if __name__ =="__main__":
p = Pool(3)
p.map(checker, datalist)
the desired output is that it adds 1 to number_of_doe_jobs ,
but every thread add 1 to it own number_of_doe_jobs , so there are 3 number_of_doe_jobs variables now.
You are not spawning 3 threads. You are spawning 3 processes. Each process has its own memory space, with its own copy of the interpreter and its own independent object space. Global variables are not shared across processes. There are ways to create shared variables (which communicate over sockets), but you might be better served by using a multiprocessing.Queue. Create it in the mainline code, and pass it as a parameter to the subprocesses. Have the jobs push a "complete" flag on the queue, and have the mainline code read the results.
FOLLOWUP
The NUMBER of jobs will always be equal to len(datalist), so it's not clear why you would track that. Here, I create a multiprocessing queue and pass that to the function. Python implements that by creating a socket. The checker function sends a signal when it finishes, and the mainline code fetches each one and prints it. q.get will block until something is in the queue.
import multiprocessing
def checker(q):
# JOB CODE GOES HERE
q.put( "done" )
if __name__ =="__main__":
q = multiprocessing.Queue()
p = Pool(3)
p.map(lambda: checker(q), datalist)
for _ in datalist:
print( q.get() )
I'm trying to learn how to use multiple processes in Python and I encountered a problem similar to the example below.
I try to start a process called p1 using .start() and after that to call a function do_something(). The problem is that the function is called before the process starts.
The code I used:
import time
from multiprocessing import Process
def complex_calculation():
start_timer = time.time()
print("Started calculating...")
[x ** 2 for x in range(20000000)] # calculation
print(f"complex_calculation: {time.time() - start_timer}")
def do_something():
print(input("Enter a letter: "))
if __name__ == "__main__":
p1 = Process(target=complex_calculation)
p1.start()
do_something()
p1.join()
It seems to work if I use time.sleep():
if __name__ == "__main__":
p1 = Process(target=complex_calculation)
p1.start()
time.sleep(1)
do_something()
p1.join()
My questions are:
Why does this happen?
What can I do so that I don't have to use time.sleep() ?
As pointed out in the comments, multiple processes run concurrently. Without doing some extra work, there are never guarantees about the order in which the processes are scheduled to run by the operating system. So while you call p1.start() before do_something(), all that means is that the Python code related to starting the process has completed before do_something is run. But the actual process represented by p1 may run in any way relative to the remainder of the Python code. It can run entirely before, entirely after, or interleaved in any way with the remainder of the Python code. Relying on it being scheduled in any particular way is one definition of a race condition.
To control the way in which these processes run relative to one another, you need a synchronization primitive. There are many ways to synchronize processes, it just depends on what you want to accomplish. If you want to make sure that the complex_calculation function has started before do_something is called, an event is probably the simplest approach. For example:
import time
from multiprocessing import Process, Event
def complex_calculation(event):
event.set() # Set the event, notifying any process waiting on it
start_timer = time.time()
print("Started calculating...")
[x ** 2 for x in range(20000000)] # calculation
print(f"complex_calculation: {time.time() - start_timer}")
def do_something(event):
event.wait() # Wait for `complex_calculation` to set the event
print(input("Enter a letter: "))
if __name__ == "__main__":
event = Event()
p1 = Process(target=complex_calculation, args=(event,))
p1.start()
do_something(event)
p1.join()
You should see something like:
$ python3 test.py
Started calculating...
Enter a letter: a
a
complex_calculation: 6.86732816696167
How can I add a new task to a multiprocessing pool that I initialized in a parent process? This following does not work:
from multiprocessing import Pool
def child_task(x):
# the child task spawns new tasks
results = p.map(grandchild_task, [x])
return results[0]
def grandchild_task(x):
return x
if __name__ == '__main__':
p = Pool(2)
print(p.map(child_task, [0]))
# Result: NameError: name 'p' is not defined
Motivation: I need to parallelize a program which consists of various child tasks, which themselves also have child tasks (i.e., grandchild tasks). Only parallelizing the child tasks OR the grandchild tasks does not utilize all my CPU cores.
In my use-case, I have various child tasks (maybe 1-50) and many grandchild tasks per child task (maybe 100-1000).
Alternatives: If this is not possible using Python's multiprocessing package, I am happy to switch to another library that supports this.
There is such a thing as a minimal reproducible example and then there is going beyond that to remove so much code as to end up with something that (1) is perhaps too oversimplified with the danger than an answer could miss the mark and (2) couldn't possibly run as shown (you need to enclose the code that creates the Pool and submits the task in a block that is controlled by an if __name__ == '__main__': statement.
But based on what you have shown, I don't believe a Pool is the solution for you; you should be creating Process instances as they are required. One way to get the results from the Processes is to store them in a shareable, managed dictionary whose key is, for example, the process id of the Process that has created the result.
To expand on your example, the child task is passed two arguments, x and y and needs to return as a result x**2 + 'y**2. The child task will spawn two instances of grandchild task, each one computing the square of its argument. The child task will then combine the return values from these processes using addition:
from multiprocessing import Process, Manager
import os
def child_task(results_dict, x, y):
# the child task spawns new tasks
p1 = Process(target=grandchild_task, args=(results_dict, x))
p1.start()
pid1 = p1.pid
p2 = Process(target=grandchild_task, args=(results_dict, y))
p2.start()
pid2 = p2.pid
p1.join()
p2.join()
pid = os.getpid()
results_dict[pid] = results_dict[pid1] + results_dict[pid2]
def grandchild_task(results_dict, n):
pid = os.getpid()
results_dict[pid] = n * n
def main():
manager = Manager()
results_dict = manager.dict()
p = Process(target=child_task, args=(results_dict, 2, 3))
p.start()
pid = p.pid
p.join()
# results will be stored with key p.pid:
print(results_dict[pid])
if __name__ == '__main__':
main()
Prints:
13
Update
If you really had a situation where, for example, child_task needed to process N identical calls varying only in its arguments but it had to spawn a sub-process or two, then use a Pool as before but additionally pass a managed dictionary to child_task to be used for spawning additional Processes (not attempting to use a Pool for this) and retrieving their results.
Update 2
The only way I could figure out for the sub-processes themselves to use pooling is to use the ProcessPoolExecutor class from concurrent.futures module. When I attempted to do the same thing with multiprocessing.Pool, I got an error because we had daemon processes trying to create their own processes. But even here the only way is for each process in the pool to have its own pool of processes. You only have a finite number of processors/cores on your computer, so unless there is a bit of I/O mixed in the processing, you can create all these pools but the processes will be waiting for a chance to run. So, it's not clear what performance gains will be realized. There is also the problem of shutting down all the pools created for the child_task sub-processes. Normally a ProcessPoolExecutor instance is created using a with block and when that block is terminated the pool that was created is cleaned up. But child_task is invoked repeatedly and clearly cannot use with block because we don't want constantly to be creating and destroying pools. What I have come here is a bit of a kludge: A third parameter is passed, either True or False, indicating whether child_task should instigate a shutdown of its pool. The default value for this parameter is False, we don't even bother passing it. After all the actual results have been retrieved and the child_task processes are now idle, we submit N new tasks with dummy values but with shutdown set to True. Note that the ProcessPoolExecutor function map works quite a bit differently than the same function in the Pool class (read the docs):
from concurrent.futures import ProcessPoolExecutor
import time
child_executor = None
def child_task(x, y, shutdown=False):
global child_executor
if child_executor is None:
child_executor = ProcessPoolExecutor(max_workers=1)
if shutdown:
if child_executor:
child_executor.shutdown(False)
child_executor = None
time.sleep(.2) # make sure another process in the pool gets the next task
return None
# the child task spawns new task(s)
future = child_executor.submit(grandchild_task, y)
# we can compute one of the results using the current process:
return grandchild_task(x) + future.result()
def grandchild_task(n):
return n * n
def main():
N_WORKERS = 2
with ProcessPoolExecutor(max_workers=N_WORKERS) as executor:
# first call is (1, 2), second call is (3, 4):
results = [result for result in executor.map(child_task, (1, 3), (2, 4))]
print(results)
# force a shutdown
# need N_WORKERS invocations:
[result for result in executor.map(child_task, (0,) * N_WORKERS, (0,) * N_WORKERS, (True,) * N_WORKERS)]
if __name__ == '__main__':
main()
Prints:
[5, 25]
Check this solution:
#!/usr/bin/python
# requires Python version 3.8 or higher
from multiprocessing import Queue, Process
import time
from random import randrange
import os
import psutil
# function to be run by each child process
def square(number):
sleep = randrange(5)
time.sleep(sleep)
print(f'Result is {number * number}, computed by pid {os.getpid()}...sleeping {sleep} secs')
# create a queue where all tasks will be placed
queue = Queue()
# indicate how many number of children you want the system to create to run the tasks
number_of_child_proceses = 5
# put all tasks in the queue above
for task in range(19):
queue.put(task)
# this the main entry/start of the program when you run
def main():
number_of_task = queue.qsize()
print(f'{"_" * 60}\nBatch: {number_of_task // number_of_child_proceses + 1} \n{"_" * 60}')
# don't create more number of children than the number of tasks. Also, in the last round, wait for all child process
# to complete so as to wrap up everything
if number_of_task <= number_of_child_proceses:
processes = [Process(target=square, args=(queue.get(),)) for _ in
range(number_of_task)]
for p in processes:
p.start()
p.join()
else:
processes = [Process(target=square, args=(queue.get(),)) for _ in range(number_of_child_proceses)]
for p in processes:
p.start()
# update count of remaining task
number_of_task = queue.qsize()
# run the program in a loop until no more task remains in the queue
while number_of_task:
current_process = psutil.Process()
children = current_process.children()
# if children process have completed assigned task but there is still more remaining tasks in the queue,
# assign them more tasks
if not len(children) and number_of_task:
print(f'\nAssigned tasks completed... reasigning the remaining {number_of_task} task(s) in the queue\n')
main()
# exit the loop if no more task in the queue to work on
print('\nAll tasks completed!!')
exit()
if __name__ == "__main__":
main()
I have looked around more, and found Ray, which addresses this exact use case using nested remote functions.
I'm trying to reduce the processing time of reading a database with roughly 100,000 entries, but I need them to be formatted a specific way, in an attempt to do this, I tried to use python's multiprocessing.map function which works perfectly except that I can't seem to get any form of queue reference to work across them.
I've been using information from Filling a queue and managing multiprocessing in python to guide me for using queues across multiple processes, and Using a global variable with a thread to guide me for using global variables across threads. I've gotten the software to work, but when I check the list/queue/dict/map length after running the process, it always returns zero
I've written a simple example to show what I mean:
You have to run the script as a file, the map's initialize function does not work from the interpreter.
from multiprocessing import Pool
from collections import deque
global_q = deque()
def my_init(q):
global global_q
global_q = q
q.append("Hello world")
def map_fn(i):
global global_q
global_q.append(i)
if __name__ == "__main__":
with Pool(3, my_init, (global_q,)) as pool:
pool.map(map_fn, range(3))
for p in range(len(global_q)):
print(global_q.pop())
Theoretically, when I pass the queue object reference from the main thread to the worker threads using the pool function, and then initialize that thread's global variables using with the given function, then when I insert elements into the queue from the map function later, that object reference should still be pointing to the original queue object reference (long story short, everything should end up in the same queue, because they all point to the same location in memory).
So, I expect:
Hello World
Hello World
Hello World
1
2
3
of course, the 1, 2, 3's are in arbitrary order, but what you'll see on the output is ''.
How come when I pass object references to the pool function, nothing happens?
Here's an example of how to share something between processes by extending the multiprocessing.managers.BaseManager class to support deques.
There's a Customized managers section in the documentation about creating them.
import collections
from multiprocessing import Pool
from multiprocessing.managers import BaseManager
class DequeManager(BaseManager):
pass
class DequeProxy(object):
def __init__(self, *args):
self.deque = collections.deque(*args)
def __len__(self):
return self.deque.__len__()
def appendleft(self, x):
self.deque.appendleft(x)
def append(self, x):
self.deque.append(x)
def pop(self):
return self.deque.pop()
def popleft(self):
return self.deque.popleft()
# Currently only exposes a subset of deque's methods.
DequeManager.register('DequeProxy', DequeProxy,
exposed=['__len__', 'append', 'appendleft',
'pop', 'popleft'])
process_shared_deque = None # Global only within each process.
def my_init(q):
""" Initialize module-level global. """
global process_shared_deque
process_shared_deque = q
q.append("Hello world")
def map_fn(i):
process_shared_deque.append(i) # deque's don't have a "put()" method.
if __name__ == "__main__":
manager = DequeManager()
manager.start()
shared_deque = manager.DequeProxy()
with Pool(3, my_init, (shared_deque,)) as pool:
pool.map(map_fn, range(3))
for p in range(len(shared_deque)): # Show left-to-right contents.
print(shared_deque.popleft())
Output:
Hello world
0
1
2
Hello world
Hello world
You cant use global variable for multiprocesing.
Pass to the function multiprocessing queue.
from multiprocessing import Queue
queue= Queue()
def worker(q):
q.put(something)
Also you are propably experiencing that the code is allright, but as the pool create separate processes, even the errors are separeted and therefore you dont see the code not only isnt working, but that it throws error.
The reason why your output is '', is because nothing was appended to your q/global_q. And if it was appended, then only some variable, that may be called global_q, but its totally different one than your global_q in your main thread
Try to print('Hello world') inside the function you want to multiprocess and you will see by yourself, that nothing is actually printed at all. That processes is simply outside of your main thread and the only way to access that process is by multiprocessing Queues. You access the Queue by queue.put('something') and something = queue.get()
Try to understand this code and you will do well:
import multiprocessing as mp
shared_queue = mp.Queue() # This will be shared among all procesess, but you need to pass the queue as an argument in the process. You CANNOT use it as global variable. Understand that the functions kind of run in total different processes and nothing can really access them... Except multiprocessing.Queue - that can be shared across all processes.
def channel(que,channel_num):
que.put(channel_num)
if __name__ == '__main__':
processes = [mp.Process(target=channel, args=(shared_queue, channel_num)) for channel_num in range(8)]
for p in processes:
p.start()
for p in processes: # wait for all results to close the pool
p.join()
for i in range(8): # Get data from Queue. (you can get data out of it at any time actually)
print(shared_queue.get())
So I want to run a function which can either search for information on the web or directly from my own mysql database.
The first process will be time-consuming, the second relatively fast.
With this in mind I create a process which starts this compound search (find_compound_view). If the process finishes relatively fast it means it's present on the database so I can render the results immediately. Otherwise, I will render "drax_retrieving_data.html".
The stupid solution I came up with was to run the function twice, once to check if the process takes a long time, the other to actually get the return values of the function. This is pretty much because I don't know how to return the values of my find_compound_view function. I've tried googling but I can't seem to find how to return the values from the class Process specifically.
p = Process(target=find_compound_view, args=(form,))
p.start()
is_running = p.is_alive()
start_time=time.time()
while is_running:
time.sleep(0.05)
is_running = p.is_alive()
if time.time() - start_time > 10 :
print('Timer exceeded, DRAX is retrieving info!',time.time() - start_time)
return render(request,'drax_internal_dbs/drax_retrieving_data.html')
compound = find_compound_view(form,use_email=False)
if compound:
data=*****
return render(request, 'drax_internal_dbs/result.html',data)
You will need a multiprocessing.Pipe or a multiprocessing.Queue to send the results back to your parent-process. If you just do I/0, you should use a Thread instead of a Process, since it's more lightweight and most time will be spend on waiting. I'm showing you how it's done for Process and Threads in general.
Process with Queue
The multiprocessing queue is build on top of a pipe and access is synchronized with locks/semaphores. Queues are thread- and process-safe, meaning you can use one queue for multiple producer/consumer-processes and even multiple threads in these processes. Adding the first item on the queue will also start a feeder-thread in the calling process. The additional overhead of a multiprocessing.Queue makes using a pipe for single-producer/single-consumer scenarios preferable and more performant.
Here's how to send and retrieve a result with a multiprocessing.Queue:
from multiprocessing import Process, Queue
SENTINEL = 'SENTINEL'
def sim_busy(out_queue, x):
for _ in range(int(x)):
assert 1 == 1
result = x
out_queue.put(result)
# If all results are enqueued, send a sentinel-value to let the parent know
# no more results will come.
out_queue.put(SENTINEL)
if __name__ == '__main__':
out_queue = Queue()
p = Process(target=sim_busy, args=(out_queue, 150e6)) # 150e6 == 150000000.0
p.start()
for result in iter(out_queue.get, SENTINEL): # sentinel breaks the loop
print(result)
The queue is passed as argument into the function, results are .put() on the queue and the parent get.()s from the queue. .get() is a blocking call, execution does not resume until something is to get (specifying timeout parameter is possible). Note the work sim_busy does here is cpu-intensive, that's when you would choose processes over threads.
Process & Pipe
For one-to-one connections a pipe is enough. The setup is nearly identical, just the methods are named differently and a call to Pipe() returns two connection objects. In duplex mode, both objects are read-write ends, with duplex=False (simplex) the first connection object is the read-end of the pipe, the second is the write-end. In this basic scenario we just need a simplex-pipe:
from multiprocessing import Process, Pipe
SENTINEL = 'SENTINEL'
def sim_busy(write_conn, x):
for _ in range(int(x)):
assert 1 == 1
result = x
write_conn.send(result)
# If all results are send, send a sentinel-value to let the parent know
# no more results will come.
write_conn.send(SENTINEL)
if __name__ == '__main__':
# duplex=False because we just need one-way communication in this case.
read_conn, write_conn = Pipe(duplex=False)
p = Process(target=sim_busy, args=(write_conn, 150e6)) # 150e6 == 150000000.0
p.start()
for result in iter(read_conn.recv, SENTINEL): # sentinel breaks the loop
print(result)
Thread & Queue
For use with threading, you want to switch to queue.Queue. queue.Queue is build on top of a collections.deque, adding some locks to make it thread-safe. Unlike with multiprocessing's queue and pipe, objects put on a queue.Queue won't get pickled. Since threads share the same memory address-space, serialization for memory-copying is unnecessary, only pointers are transmitted.
from threading import Thread
from queue import Queue
import time
SENTINEL = 'SENTINEL'
def sim_io(out_queue, query):
time.sleep(1)
result = query + '_result'
out_queue.put(result)
# If all results are enqueued, send a sentinel-value to let the parent know
# no more results will come.
out_queue.put(SENTINEL)
if __name__ == '__main__':
out_queue = Queue()
p = Thread(target=sim_io, args=(out_queue, 'my_query'))
p.start()
for result in iter(out_queue.get, SENTINEL): # sentinel-value breaks the loop
print(result)
Read here why for result in iter(out_queue.get, SENTINEL):
should be prefered over a while True...break setup, where possible.
Read here why you should use if __name__ == '__main__': in all your scripts and especially in multiprocessing.
More about get()-usage here.