Dash dropdown wont reset values once x clicked - python

I created 2 Dash dropdowns where one dropdown (the lower) is based on the selection in the first dropdown (the upper)
The selection and everything work fine.
However, when I click the X button to remove all the options from the area-dropdown, it does remove all the options but still, city-dropdown values are the same as when I clicked the X button.
why won't it reset?
This is the code I'm using:
#app.callback(
Output("city-dropdown", "options"),
Input("area-dropdown", "value"),
)
def update_city_dropdown(areas):
if areas is None or None in areas or areas == []:
return []
_area_codes = area_codes['area'][area_codes['name'].isin(areas)]
cities = city_codes['name'][city_codes['area'].isin(_area_codes)]
return [{'label': city, 'value': city} for city in cities]
where:
area_dropdown = dcc.Dropdown(
options=area_codes['name'],
placeholder="Select an area",
multi=True,
style=DROPDOWN_STYLE,
id='area-dropdown'
)
city_dropdown = dcc.Dropdown(
placeholder="Select a city",
options=[],
multi=True,
style=DROPDOWN_STYLE,
id='city-dropdown'
)
Thank you

The city_dropdown.value isn't updated, so upon re-selection of an area, the cities show-up again (since those values are now again in the refreshed options).
You can add the following callback:
#app.callback(
Output("city-dropdown", "value"),
Input("area-dropdown", "value")
)
def clear_city_dropdown(value):
return []
Note that the above will reset your cities when switching areas.

Related

Define Dependent Dictionaries in Python

I am working on an NLP project analyzing the words spoken by characters in The Office. Part of this project involves making a network diagram of which characters talk to each other for a given episode.
This will be shown in a Dash app by allowing a user to select dropdowns for 4 parameters: season, episode, character1, and character2.
Here is a relevant snippet of my code so far:
#Import libraries
import pandas as pd
import numpy as np
import dash
import dash_core_components as dcc
import dash_html_components as html
import dash_bootstrap_components as dbc
from dash.dependencies import Input, Output, State
#Load data
sheet_url = 'https://docs.google.com/spreadsheets/d/18wS5AAwOh8QO95RwHLS95POmSNKA2jjzdt0phrxeAE0/edit#gid=747974534'
url = sheet_url.replace('/edit#gid=', '/export?format=csv&gid=')
df = pd.read_csv(url)
#Set parameters
choose_season = df['season'].unique()
choose_episode = df['episode'].unique()
choose_character = ['Andy','Angela', 'Darryl', 'Dwight', 'Jan', 'Jim','Kelly','Kevin','Meredith','Michael','Oscar','Pam','Phyllis','Roy','Ryan','Stanley','Toby']
#Define app layout
app = dash.Dash()
server = app.server
app.layout = html.Div([
dbc.Row([
dbc.Col(
dcc.Dropdown(
id='dropdown1',
options=[{'label': i, 'value': i} for i in choose_season],
value=choose_season[0]
), width=3
),
dbc.Col(
dcc.Dropdown(
id='dropdown2',
options=[{'label': i, 'value': i} for i in choose_episode],
value=choose_episode[0]
), width=3
),
dbc.Col(
dcc.Dropdown(
id='dropdown3',
options=[{'label': i, 'value': i} for i in choose_character],
value=choose_character[0]
), width=3
),
dbc.Col(
dcc.Dropdown(
id='dropdown4',
options=[{'label': i, 'value': i} for i in choose_character],
value=choose_character[1]
), width=3
)
])
])
if __name__=='__main__':
app.run_server()
In order to have this work efficiently, I would like to have the following dependencies in the dropdown menus:
1.) The selection of the first dropdown menu updates the dropdown menu
ie: Season updates possible episodes
2.) The selection of the first two dropdown menus updates the 3rd and 4th dropdown menus
ie: Season, Episode updates possible characters (if a character was not in that episode, they will not appear)
3.) The selection of the third dropdown menu updates the fourth dropdown menu
ie: If a character is selected in the third dropdown menu, they can not be selected in the fourth (can't select the same character twice)
I understand one way to do this is to make a massive season to episode dictionary and then an even larger season to episode to character dictionary.
I've already made the code to process the season to episode dictionary:
#app.callback(
Output('dropdown2', 'options'), #--> filter episodes
Output('dropdown2', 'value'),
Input('dropdown1', 'value') #--> choose season
)
def set_episode_options(selected_season):
return [{'label': i, 'value': i} for i in season_episode_dict[selected_season]], season_episode_dict[selected_season][0]
I can definitely build these dictionaries, but this seems like a really inefficient use of time. Does anyone know of a way to build these dictionaries with just a few lines of code? Not sure how to approach building these in the easiest way possible. Also, if you have an idea for a better way to approach this problem, please let me know that too.
Any help would be appreciated! Thank you!
I think I see what you're asking about now. Something like this should get you a basic dictionary, which you could then modify for the options param for the dropdowns.
df = pd.read_csv(url)
season_episode_character_dictionary = {}
for season in df['season'].unique.tolist():
df_season = df[df['season'].eq(season)]
season_episode_character_dictionary[season] = {}
for episode in df_season['episode'].unique.tolist():
df_episode = df_season[df_season['episode'].eq(episode)]
characters = df_episode['characters'].unique.tolist()
season_episode_character_dictionary[season][episode] = characters

Persistence problem for dependent dropdowns in Plotly Dash

I have two dependent dropdowns that I want to persist in user session. I noticed that the persistence doesn't work for the second dropdown. It get reset with no possible value.
Here is a code sample :
from dash import Dash, dcc, html
from dash.dependencies import Input, Output
app = Dash(
prevent_initial_callbacks=True,
suppress_callback_exceptions=True,
)
#app.callback(
Output("dd-client-code", "options"),
Input("dd-clients-seg-1", "value")
)
def dd_client_code(client_seg_1):
#any function would do for generate_options
return generate_options(selected_segment=client_seg_1)
dd1 = dcc.Dropdown(
id="dd-clients-seg-1",
options=["record_1", "record_2", "record_3"],
persistence="true",
persistence_type="session",
)
dd2 = dcc.Dropdown(
id="dd-client-code",
persistence="true",
persistence_type="session",
)
app.layout = html.Div(children=[dd1, dd2])
app.run_server(debug=True)
Can anyone help me ?
The persistent values for both dropdowns are stored as expected...
but the value for dd2 is updated to null when the page is reloaded because dd2 has no options at that time.
The callback to update dd2 is not called when the page is reloaded. Even if the callback was called it would be too late because of the first issue.
The following modified code uses dcc.Store to store the value of dd1 each time it is changed. dcc.Interval is used to ensure that the callback is called after the page reload. dd2 is turned into a function that takes the value of dd1 and is called by a new callback that triggers on the interval to update the layout.
import dash.exceptions
from dash import Dash, dcc, html
from dash.dependencies import Input, Output, State
app = Dash(
prevent_initial_callbacks=True,
suppress_callback_exceptions=True,
)
def generate_options(selected_segment):
if selected_segment == "record_1":
return ["A", "B", "C"]
elif selected_segment == "record_2":
return ["One", "Two", "Three"]
else:
return ["Small", "Medium", "Large"]
dd1 = dcc.Dropdown(
id="dd-clients-seg-1",
options=["record_1", "record_2", "record_3"],
persistence="true",
persistence_type="session",
)
def dd2(dd1_value):
"""Return a dd2 dropdown with the appropriate options based on dd1 value"""
options = [] if not dd1_value else generate_options(dd1_value)
return dcc.Dropdown(
id="dd-client-code",
options=options,
persistence="true",
persistence_type="session",
)
#app.callback(
Output("dd-client-code", "options"),
# Store the value of dd1 dropdown when it changes
Output("dd-clients-seg-1-value", "data"),
Input("dd-clients-seg-1", "value")
)
def dd_client_code(client_seg_1):
if not client_seg_1:
raise dash.exceptions.PreventUpdate
return generate_options(client_seg_1), client_seg_1
#app.callback(
Output("dd2-div", "children"),
Input("interval-timer", "n_intervals"),
State("dd-clients-seg-1-value", "data"),
)
def dd2_div_handler(unused, dd1_value):
"""Update the dd2 menu when triggered by dcc.Interval"""
return dd2(dd1_value)
app.layout = html.Div([
# store the latest value of dd-clients-seg-1 dropdown
dcc.Store("dd-clients-seg-1-value", storage_type="session"),
# fires 1ms after page load
dcc.Interval(id="interval-timer", interval=1, max_intervals=1),
# static menu
dd1,
# dynamic menu: don't put dd2 here to avoid persistent value going null
html.Div(id="dd2-div")
])
app.run_server(debug=True)
This was tested with Dash 2.4.1

Two filters in Dash Table using callback function

I am wanting to filter the table according to selected date filter or dropdown or both. But I'm not able to integrate the two components to interact with the table. Does anyone know where I'm going wrong?
I don't know exactly how to put two filters to work on a single table
app.layout = html.Div([
# Title
html.Div([
html.H1(children="test", id="title")
]),
# Range Date
html.Div(
id="container_range_date",
children=dcc.DatePickerRange(
id="date_range",
min_date_allowed=date(2016, 1 , 1),
max_date_allowed=date(2021, 12, 31),
initial_visible_month=date(2016, 1, 1),
start_date=date(2026, 1, 1),
end_date=date(2021, 12, 31)
)
),
# Menu Dropdown
html.Div(
id="container_col_select",
children=dcc.Dropdown(
id="col_select",
options=[{"label":i, "value":i} for i in df["customer"].unique()],
value=df["customer"][0:].unique(),
multi=True,
placeholder="customer"
)
),
# Data Table
dash_table.DataTable(
id="table",
columns=[{"name":x, "id":x} for x in df.columns],
data=df.to_dict("rows"),
fixed_rows={'headers':True},
export_format="xlsx",
filter_action="native"
)
])
# Callback
#app.callback(
Output("table", "data"),
[Input("col_select", "value"),
Input("date_range", "start_date"),
Input("date_range", "end_date")]
)
def outputUpdate(dropdownValue, startDate, endDate):
if type(dropdownValue) != str:
dfFiltered = df[(df["customer"].isin(dropdownValue)) & (df["date"] >= startDate) & (df["date"] <= endDate)]
else:
dfFiltered = df[df["customer"] == dropdownValue]
return dfFiltered.to_dict("rows")
feel free to use this example and adjust it according your data model:
#app.callback(
Output('table-container', 'data'),
[Input('Filter1_dropwdown', 'value'),
Input('Filter2_dropwdown', 'value')]
)
def filter_df(filter_01, filter_02):
if (not filter_01 and not filter_02):
# Return all the rows on initial load
return df.to_dict('records')
filtered = df.query('filter_1_field in #filter_01 or filter_2_field in #filter_02')
return filtered.to_dict('records')

Modify Dash Plotly dropdown menu to manipulate multiple plots

Ok so I'm trying to make simple webapp with dash plotly. I have a couple of plots on my dashboard that I need to be modified by the same dropdown. One plot is a lineplot that shows how the data fluctuates in a 5 year period and the other is an animated barchart that shows the selected country's move for certain year.
The data is in shape:
Country name
Score
year
Finland
12
2015
Finland
11
2016
Denmark
3
2015
And so on for 150 countries and a period from 2015-2020
Here is my code:
#app.callback(
Output("page-content", "children"),
[Input("url", "pathname")]
)
def render_page_content(pathname):
if pathname == "/":
return [
html.P("This is the content of the home page!"),
#This is the code for the plots
dcc.Graph(id='scattergraph', figure=fig),
html.Div([
html.Div([
dcc.Graph(id='linechart'),
],className='six columns'),
html.Div([
dcc.Graph(id='barchart'),
],className='six columns'),
],className='row'),
html.Div([
dcc.Dropdown(id='dropdown_id', options=name_options,multi=True)],style={'width':'40%'})
]
elif pathname == "/page-1":
return html.P("This is the content of page 1. Yay!")
elif pathname == "/page-2":
return html.P("Oh cool, this is page 2!")
# If the user tries to reach a different page, return a 404 message
return dbc.Jumbotron(
[
html.H1("404: Not found", className="text-danger"),
html.Hr(),
html.P(f"The pathname {pathname} was not recognised..."),
]
)
And below is the function to update the output, along with a screenshot of the result
#app.callback(
[Output('piechart', 'figure'),
Output('barchart', 'figure')],
[Input('dropdown_id', 'value')]
)
#This updates the charts on the bottom of the home page
def update_data(chosen_country):
# if len(chosen_country)==0:
# df_filterd = dff[dff['Country name'].isin(['Netherlands','Iran','Spain','Italy'])]
# else:
# print(chosen_country)
# df_filterd = dff[dff.index.isin(chosen_country)]
dff=df.copy()
df_filterd = dff[dff['Country name']== chosen_country]
bar_chart=px.bar(data_frame=df_filterd, x="Country name", y="Score", color="Country name",animation_frame="year")
list_chosen_countries=df_filterd['Country name'].tolist()
df_line = dfcon[dfcon['Country name'].isin(list_chosen_countries)]
line_chart = px.line(
data_frame=df_line,
x='year',
y='Score',
color='Country name',
labels={'Country name':'Countries', 'year':'year'},
)
line_chart.update_layout(uirevision='foo')
return (bar_chart,line_chart)
Some questions I can't really see in your code:
Where is the DataFrame dfcon defined?
Where is the variable name_options defined? Have you assigned the labels and values for the drop down menu? You could do something like:
dcc.Dropdown(id='dropdown_id',
options={'label': name, 'value': name} for name in name_options,
multi=True)
Then the value of the dropdown will come into the callback! Be careful with your multi being True, if the user is allowed to pick more than one country then it could have issues when you are filtering the information, so you would need a new for loop.

Plotly: Dash button with live graph not working

i developed python dash based application for monitoring. as a part of the project i want to display live graph and change the live graph value based on user input. i am stuck in this part. the live graph getting update when i start typing in input box (eg:temp) the graph keep on updating for each letter like t,te,tem,temp. so i created a button to submit the input value. still the graph updating for each letter.
the code for the same:
app = dash.Dash(__name__)
app.layout = html.Div(
[
dcc.Input(id='input-value', value='example', type='text'),
html.Button('Submit', id="submit-button"),
dcc.Graph(id='live-graph', animate=False),
dcc.Interval(
id='graph-update',
interval=1*1000
),
]
)
call back function is like below
#app.callback(Output('live-graph', 'figure'),
[Input('submit-button','n_clicks')],
state=[State(component_id='sentiment_term', component_property='value')],
events=[Event('graph-update', 'interval')])
def update_graph_scatter(n_clicks, input_value):
conn = sqlite3.connect('database.db')
c = conn.cursor()
df = pd.read_sql("SELECT * FROM table WHERE colume LIKE ? ORDER BY unix DESC LIMIT 1000", conn ,params=('%' + input_value+ '%',))
df.sort_values('unix', inplace=True)
df['date'] = pd.to_datetime(df['unix'],unit='ms')
df.set_index('date', inplace=True)
X = df.index
Y = df.column
data = plotly.graph_objs.Scatter(
x=X,
y=Y,
name='Scatter',
mode= 'lines+markers'
)
return {'data': [data],'layout' : go.Layout(xaxis=dict(range= [min(X),max(X)]),
yaxis=dict(range=[min(Y),max(Y)])}
Note: If i removed the interval the button start working.but i want to be live update as well as button
You could use an intermediate component like a div to save the input from the text field and update that div only on button click.
So you would have
app = dash.Dash(__name__)
app.layout = html.Div([
dcc.Input(id='input-value', value='example', type='text'),
html.Div(['example'], id='input-div', style={'display': 'none'}),
html.Button('Submit', id="submit-button"),
dcc.Graph(id='live-graph', animate=False),
dcc.Interval(
id='graph-update',
interval=1*1000
),
])
Now you update the div only on button click:
#app.callback(Output('input-div', 'children'),
[Input('submit-button', 'n_clicks')],
state=[State(component_id='input-value', component_property='value')])
def update_div(n_clicks, input_value):
return input_value
And the Graph always uses the the div content to query your database (either when the interval triggers or the div changes):
#app.callback(Output('live-graph', 'figure'),
[Input('graph-update', 'interval'),
Input('input-div', 'children')])
def update_graph_scatter(n, input_value):
...
Are you sure the updates on each letter are because of the input? Sounds like the interval updates the graph with the not finished input you are typing.
P.S.: I guess you have a name discrepancy between you Input and State id.

Categories

Resources