SimpleITK Selectively Alter Pixels / Slicing - python

I've loaded a CT scan in SimpleITK. I'd like to do a few things that are pretty simple in NumPy, but haven't figured out how to do them in SimpleITK. I'd like to do them in SimpleITK for speed.
# NumPy: Changes all values of 100 to now become 500
nparr = nparr[nparr == 100] = 500
# SimpleITK:
???
SimpleITK image==100 will produce a binary image of the same dimension, where all intensities==100 are 1/True. This is desired. But I don't believe SimpleITK supports boolean indexing unfortunately. What's the most efficient way to accomplish this?
I've come up with this funky looking thing; but I was hoping to find the intended method / best practice means for doing this:
# Cast because data type returned is uint8 otherwise
difference = 500 - 100
offset = SimpleITK.Cast( image == 100), sitk.sitkInt32 ) * difference
image += offset

You can use the BinaryTheshold filter.
result = sitk.BinaryThreshold( image, 100, 101, 500, 0 )
That should only select pixels with intensity 100.

You are working using the SimpleITK image object to use it in a numpy style you need to use the methods GetArrayFromImage and GetImageFromArray to then get pixel access by converting the imagedata into a numpy array.
import SimpleITK as sitk
difference = 500 - 100
img_arr = sitk.GetArrayFromImage(image)
offset = img_arr[img_arr == 100] * difference
output = sitk.GetImageFromArray(image += offset)

Related

SimpleITK - Coronal/sagittal views problems with size

I'm trying to extract the all three views (Axial, Sagittal and Coronal) from a CTA in DICOM format, using the SimpleItk library.
I can correctly read the series from a given directory:
...
import SimpleITK as sitk
...
reader = sitk.ImageSeriesReader()
dicom_names = reader.GetGDCMSeriesFileNames(input_dir)
reader.SetFileNames(dicom_names)
# Execute the reader
image = reader.Execute()
...
and then, using numpy arrays as stated in this questions, I'm able to extract and save the 3 views.
...
image_array = sitk.GetArrayFromImage(image)
...
for i in range(image_array.shape[0]):
output_file_name = axial_out_dir + 'axial_' + str(i) + '.png'
logging.debug('Saving image to ' + output_file_name)
imageio.imwrite(output_file_name, convert_img(image_array[i, :, :], axial_min, axial_max), format='png')
...
The other 2 are made by saving image_array[:, i, :] and image_array[:, :, i], while convert_img(..) is a function that only converts the data type, so it does not alter any shape.
However, the coronal and sagittal views are stretched, rotated and with wide black band (in some slice they are very wide).
Here's the screenshot from Slicer3d:
while this is the output of my code:
Axial
Sagittal
Coronal
Image shape is 512x512x1723, which result in axial pngs being 512x512 pixel, coronal and sagittal being 512x1723, thus this seems correct.
Should I try using PermuteAxes filter? The problem is that I was not able to find any documentation regarding its use in python (neither in other language due to 404 in documentation page)
There is also a way to improve the contrast? I have used the AdaptiveHistogramEqualization filter from simpleitk but it's way worse than Slicer3D visualization, other than being very slow.
Any help is appreciated, thank you!
When you convert your SimpleITK image to a NumPy array, all the pixel spacing information is lost (as the comments above suggest). If you do everything in SimpleITK, it retains that spacing information.
It's very easy to extract slices in X, Y and Z from an image in SimpleITK using python's array slicing:
import SimpleITK as sitk
# a blank test image
img = sitk.Image([100, 101, 102], sitk.sitkUInt8)
# non-uniform spacing, for illustration
img.SetSpacing([1.0, 1.1, 1.2])
# select the 42nd Z slice
zimg = img[:, :, 42]
#select the 0th X slice
ximg = img[0, :, :]
#select the 100th Y slice
yimg = img[:, 100, :]
#print the spacing to show it's retained
print(yimg.GetSpacing())
Answering my own question if someone need it.
Given the fact that I need to use the slices in a deep learning framework and for data augmentation, I need them to be resampled in a new spacing which is (1.0, 1.0, 1.0).
Solved it by using this function:
def resample_image(itk_image, out_spacing=(1.0, 1.0, 1.0)):
"""
Resample itk_image to new out_spacing
:param itk_image: the input image
:param out_spacing: the desired spacing
:return: the resampled image
"""
# get original spacing and size
original_spacing = itk_image.GetSpacing()
original_size = itk_image.GetSize()
# calculate new size
out_size = [
int(np.round(original_size[0] * (original_spacing[0] / out_spacing[0]))),
int(np.round(original_size[1] * (original_spacing[1] / out_spacing[1]))),
int(np.round(original_size[2] * (original_spacing[2] / out_spacing[2])))
]
# instantiate resample filter with properties and execute it
resample = sitk.ResampleImageFilter()
resample.SetOutputSpacing(out_spacing)
resample.SetSize(out_size)
resample.SetOutputDirection(itk_image.GetDirection())
resample.SetOutputOrigin(itk_image.GetOrigin())
resample.SetTransform(sitk.Transform())
resample.SetDefaultPixelValue(itk_image.GetPixelIDValue())
resample.SetInterpolator(sitk.sitkNearestNeighbor)
return resample.Execute(itk_image)
and then saving by using numpy arrays as stated in the original question.
I might be late, but you could use Torchio for this. I think a good solution for your case is to use the CLI tool that is installed with TorchIO:
$ tiohd your_image.nii.gz
ScalarImage(shape: (1, 512, 512, 1723); spacing: (0.50, 0.50, 1.00); orientation: RAS+; memory: 1.7 GiB; dtype: torch.ShortTensor)
$ torchio-transform your_image.nii.gz Resample one_iso.nii.gz
$ tiohd one_iso.nii.gz
ScalarImage(shape: (1, 256, 256, 1723); spacing: (1.00, 1.00, 1.00); orientation: RAS+; memory: 430.8 MiB; dtype: torch.ShortTensor)
This works because 1 mm is the default target resolution for the Resample transform.
You can also manipulate your images using the normal Python interface for TorchIO, of course.
Disclaimer: I'm the main developer of TorchIO.

How should I convert a float32 image to an uint8 image?

I want to convert a float32 image into uint8 image in Python using the openCV library. I used the following code, but I do not know whether it is correct or not.
Here I is the float32 image.
J = I*255
J = J.astype(np.uint8)
I really appreciate if can you help me.
If you want to convert an image from single precision floating point (i.e. float32) to uint8, numpy and opencv in python offers two convenient approaches.
If you know that your image have a range between 0 and 255 or between 0 and 1 then you can simply make the convertion the way you already do:
I *= 255 # or any coefficient
I = I.astype(np.uint8)
If you don't know the range I suggest you to apply a min max normalization
i.e. : (value - min) / (max - min)
With opencv you simply call the following instruction :
I = cv2.normalize(I, None, 255, 0, cv2.NORM_MINMAX, cv2.CV_8U)
The returned variable I type will have the type np.uint8 (as specify by the last argument) and a range between 0 and 255.
Using numpy you can also write something similar:
def normalize8(I):
mn = I.min()
mx = I.max()
mx -= mn
I = ((I - mn)/mx) * 255
return I.astype(np.uint8)
It is actually very simple:
img_uint8 = img_float32.astype(np.uint8)

Faster implementation to quantize an image with an existing palette?

I am using Python 3.6 to perform basic image manipulation through Pillow. Currently, I am attempting to take 32-bit PNG images (RGBA) of arbitrary color compositions and sizes and quantize them to a known palette of 16 colors. Optimally, this quantization method should be able to leave fully transparent (A = 0) pixels alone, while forcing all semi-transparent pixels to be fully opaque (A = 255). I have already devised working code that performs this, but I wonder if it may be inefficient:
import math
from PIL import Image
# a list of 16 RGBA tuples
palette = [
(0, 0, 0, 255),
# ...
]
with Image.open('some_image.png').convert('RGBA') as img:
for py in range(img.height):
for px in range(img.width):
pix = img.getpixel((px, py))
if pix[3] == 0: # Ignore fully transparent pixels
continue
# Perform exhaustive search for closest Euclidean distance
dist = 450
best_fit = (0, 0, 0, 0)
for c in palette:
if pix[:3] == c: # If pixel matches exactly, break
best_fit = c
break
tmp = sqrt(pow(pix[0]-c[0], 2) + pow(pix[1]-c[1], 2) + pow(pix[2]-c[2], 2))
if tmp < dist:
dist = tmp
best_fit = c
img.putpixel((px, py), best_fit + (255,))
img.save('quantized.png')
I think of two main inefficiencies of this code:
Image.putpixel() is a slow operation
Calculating the distance function multiple times per pixel is computationally wasteful
Is there a faster method to do this?
I've noted that Pillow has a native function Image.quantize() that seems to do exactly what I want. But as it is coded, it forces dithering in the result, which I do not want. This has been brought up in another StackOverflow question. The answer to that question was simply to extract the internal Pillow code and tweak the control variable for dithering, which I tested, but I find that Pillow corrupts the palette I give it and consistently yields an image where the quantized colors are considerably darker than they should be.
Image.point() is a tantalizing method, but it only works on each color channel individually, where color quantization requires working with all channels as a set. It'd be nice to be able to force all of the channels into a single channel of 32-bit integer values, which seems to be what the ill-documented mode "I" would do, but if I run img.convert('I'), I get a completely greyscale result, destroying all color.
An alternative method seems to be using NumPy and altering the image directly. I've attempted to create a lookup table of RGB values, but the three-dimensional indexing of NumPy's syntax is driving me insane. Ideally I'd like some kind of code that works like this:
img_arr = numpy.array(img)
# Find all unique colors
unique_colors = numpy.unique(arr, axis=0)
# Generate lookup table
colormap = numpy.empty(unique_colors.shape)
for i, c in enumerate(unique_colors):
dist = 450
best_fit = None
for pc in palette:
tmp = sqrt(pow(c[0] - pc[0], 2) + pow(c[1] - pc[1], 2) + pow(c[2] - pc[2], 2))
if tmp < dist:
dist = tmp
best_fit = pc
colormap[i] = best_fit
# Hypothetical pseudocode I can't seem to write out
for iy in range(arr.size):
for ix in range(arr[0].size):
if arr[iy, ix, 3] == 0: # Skip transparent
continue
index = # Find index of matching color in unique_colors, somehow
arr[iy, ix] = colormap[index]
I note with this hypothetical example that numpy.unique() is another slow operation, since it sorts the output. Since I cannot seem to finish the code the way I want, I haven't been able to test if this method is faster anyway.
I've also considered attempting to flatten the RGBA axis by converting the values to a 32-bit integer and desiring to create a one-dimensional lookup table with the simpler index:
def shift(a):
return a[0] << 24 | a[1] << 16 | a[2] << 8 | a[3]
img_arr = numpy.apply_along_axis(shift, 1, img_arr)
But this operation seemed noticeably slow on its own.
I would prefer answers that involve only Pillow and/or NumPy, please. Unless using another library demonstrates a dramatic computational speed increase over any PIL- or NumPy-native solution, I don't want to import extraneous libraries to do something these two libraries should be reasonably capable of on their own.
for loops should be avoided for speed.
I think you should make a tensor like:
d2[x,y,color_index,rgb] = distance_squared
where rgb = 0..2 (0 = r, 1 = g, 2 = b).
Then compute the distance:
d[x,y,color_index] =
sqrt(sum(rgb,d2))
Then select the color_index with the minimal distance:
c[x,y] = min_index(color_index, d)
Finally replace alpha as needed:
alpha = ceil(orig_image.alpha)
img = c,alpha

Better image normalization with numpy

I already achieved the goal described in the title but I was wondering if there was a more efficient (or generally better) way to do it. First of all let me introduce the problem.
I have a set of images of different sizes but with a width/height ratio less than (or equal) 2 (could be anything but let's say 2 for now), I want to normalize each one, meaning I want all of them to have the same size. Specifically I am going to do so like this:
Extract the max height above all images
Zoom the image so that each image reaches the max height keeping its ratio
Add a padding to the right with just white pixels until the image has a width/height ratio of 2
Keep in mind the images are represented as numpy matrices of grey scale values [0,255].
This is how I'm doing it now in Python:
max_height = numpy.max([len(obs) for obs in data if len(obs[0])/len(obs) <= 2])
for obs in data:
if len(obs[0])/len(obs) <= 2:
new_img = ndimage.zoom(obs, round(max_height/len(obs), 2), order=3)
missing_cols = max_height * 2 - len(new_img[0])
norm_img = []
for row in new_img:
norm_img.append(np.pad(row, (0, missing_cols), mode='constant', constant_values=255))
norm_img = np.resize(norm_img, (max_height, max_height*2))
There's a note about this code:
I'm rounding the zoom ratio because it makes the final height equal to max_height, I'm sure this is not the best approach but it's working (any suggestion is appreciated here). What I'd like to do is to expand the image keeping the ratio until it reaches a height equal to max_height. This is the only solution I found so far and it worked right away, the interpolation works pretty good.
So my final questions are:
Is there a better approach to achieve what explained above (image normalization) ? Do you think I could have done this differently ? Is there a common good practice I'm not following ?
Thanks in advance for your time.
Instead of ndimage.zoom you could use
scipy.misc.imresize. This
function allows you to specify the target size as a tuple, instead of by zoom
factor. Thus you won't have to call np.resize later to get the size exactly as
desired.
Note that scipy.misc.imresize calls
PIL.Image.resize
under the hood, so PIL (or Pillow) is a dependency.
Instead of using np.pad in a for-loop, you could allocate space for the desired array, norm_arr, first:
norm_arr = np.full((max_height, max_width), fill_value=255)
and then copy the resized image, new_arr into norm_arr:
nh, nw = new_arr.shape
norm_arr[:nh, :nw] = new_arr
For example,
from __future__ import division
import numpy as np
from scipy import misc
data = [np.linspace(255, 0, i*10).reshape(i,10)
for i in range(5, 100, 11)]
max_height = np.max([len(obs) for obs in data if len(obs[0])/len(obs) <= 2])
max_width = 2*max_height
result = []
for obs in data:
norm_arr = obs
h, w = obs.shape
if float(w)/h <= 2:
scale_factor = max_height/float(h)
target_size = (max_height, int(round(w*scale_factor)))
new_arr = misc.imresize(obs, target_size, interp='bicubic')
norm_arr = np.full((max_height, max_width), fill_value=255)
# check the shapes
# print(obs.shape, new_arr.shape, norm_arr.shape)
nh, nw = new_arr.shape
norm_arr[:nh, :nw] = new_arr
result.append(norm_arr)
# visually check the result
# misc.toimage(norm_arr).show()

Calculating variance image python

Is there an easy way to calculate a running variance filter on an image using Python/NumPy/Scipy? By running variance image I mean the result of calculating sum((I - mean(I))^2)/nPixels for each sub-window I in the image.
Since the images are quite large (12000x12000 pixels), I want to avoid the overhead of converting the arrays between formats just to be able to use a different library and then convert back.
I guess I could do this manually by finding the mean using something like
kernel = np.ones((winSize, winSize))/winSize**2
image_mean = scipy.ndimage.convolve(image, kernel)
diff = (image - image_mean)**2
# Calculate sum over winSize*winSize sub-images
# Subsample result
but it would be much nicer to have something like the stdfilt-function from Matlab.
Can anyone point me in the direction of a library that has this functionality AND supports numpy arrays, or hint at/provide a way to do this in NumPy/SciPy?
Simpler solution and also faster: use SciPy's ndimage.uniform_filter
import numpy as np
from scipy import ndimage
rows, cols = 500, 500
win_rows, win_cols = 5, 5
img = np.random.rand(rows, cols)
win_mean = ndimage.uniform_filter(img, (win_rows, win_cols))
win_sqr_mean = ndimage.uniform_filter(img**2, (win_rows, win_cols))
win_var = win_sqr_mean - win_mean**2
The "stride trick" is beautiful trick, but 4 slower and not that readable.
the generic_filter is 20 times slower than the strides...
You can use numpy.lib.stride_tricks.as_strided to get a windowed view of your image:
import numpy as np
from numpy.lib.stride_tricks import as_strided
rows, cols = 500, 500
win_rows, win_cols = 5, 5
img = np.random.rand(rows, cols)
win_img = as_strided(img, shape=(rows-win_rows+1, cols-win_cols+1,
win_rows, win_cols),
strides=img.strides*2)
And now win_img[i, j]is the (win_rows, win_cols) array with the top left corner at position [i, j]:
>>> img[100:105, 100:105]
array([[ 0.34150754, 0.17888323, 0.67222354, 0.9020784 , 0.48826682],
[ 0.68451774, 0.14887515, 0.44892615, 0.33352743, 0.22090103],
[ 0.41114758, 0.82608407, 0.77190533, 0.42830363, 0.57300759],
[ 0.68435626, 0.94874394, 0.55238567, 0.40367885, 0.42955156],
[ 0.59359203, 0.62237553, 0.58428725, 0.58608119, 0.29157555]])
>>> win_img[100,100]
array([[ 0.34150754, 0.17888323, 0.67222354, 0.9020784 , 0.48826682],
[ 0.68451774, 0.14887515, 0.44892615, 0.33352743, 0.22090103],
[ 0.41114758, 0.82608407, 0.77190533, 0.42830363, 0.57300759],
[ 0.68435626, 0.94874394, 0.55238567, 0.40367885, 0.42955156],
[ 0.59359203, 0.62237553, 0.58428725, 0.58608119, 0.29157555]])
You have to be careful, though, with not converting your windowed view of the image, into a windowed copy of it: in my example that would require 25 times more storage. I believe numpy 1.7 lets you select more than one axis, so you could then simply do:
>>> np.var(win_img, axis=(-1, -2))
I am stuck with numpy 1.6.2, so I cannot test that. The other option, which may fail with not-so-large windows, would be to do, if I remember my math correctly:
>>> win_mean = np.sum(np.sum(win_img, axis=-1), axis=-1)/win_rows/win_cols
>>> win_sqr_mean = np.sum(np.sum(win_img**2, axis=-1), axis=-1)/win_rows/win_cols
>>> win_var = win_sqr_mean - win_mean**2
And now win_var is an array of shape
>>> win_var.shape
(496, 496)
and win_var[i, j] holds the variance of the (5, 5) window with top left corner at [i, j].
After a bit of optimization we came up with this function for a generic 3D image:
def variance_filter( img, VAR_FILTER_SIZE ):
from numpy.lib.stride_tricks import as_strided
WIN_SIZE=(2*VAR_FILTER_SIZE)+1
if ~ VAR_FILTER_SIZE%2==1:
print 'Warning, VAR_FILTER_SIZE must be ODD Integer number '
# hack -- this could probably be an input to the function but Alessandro is lazy
WIN_DIMS = [ WIN_SIZE, WIN_SIZE, WIN_SIZE ]
# Check that there is a 3D image input.
if len( img.shape ) != 3:
print "\t variance_filter: Are you sure that you passed me a 3D image?"
return -1
else:
DIMS = img.shape
# Set up a windowed view on the data... this will have a border removed compared to the img_in
img_strided = as_strided(img, shape=(DIMS[0]-WIN_DIMS[0]+1, DIMS[1]-WIN_DIMS[1]+1, DIMS[2]-WIN_DIMS[2]+1, WIN_DIMS[0], WIN_DIMS[1], WIN_DIMS[2] ), strides=img.strides*2)
# Calculate variance, vectorially
win_mean = numpy.sum(numpy.sum(numpy.sum(img_strided, axis=-1), axis=-1), axis=-1) / (WIN_DIMS[0]*WIN_DIMS[1]*WIN_DIMS[2])
# As per http://en.wikipedia.org/wiki/Variance, we are removing the mean from every window,
# then squaring the result.
# Casting to 64 bit float inside, because the numbers (at least for our images) get pretty big
win_var = numpy.sum(numpy.sum(numpy.sum((( img_strided.T.astype('<f8') - win_mean.T.astype('<f8') )**2).T, axis=-1), axis=-1), axis=-1) / (WIN_DIMS[0]*WIN_DIMS[1]*WIN_DIMS[2])
# Prepare an output image of the right size, in order to replace the border removed with the windowed view call
out_img = numpy.zeros( DIMS, dtype='<f8' )
# copy borders out...
out_img[ WIN_DIMS[0]/2:DIMS[0]-WIN_DIMS[0]+1+WIN_DIMS[0]/2, WIN_DIMS[1]/2:DIMS[1]-WIN_DIMS[1]+1+WIN_DIMS[1]/2, WIN_DIMS[2]/2:DIMS[2]-WIN_DIMS[2]+1+WIN_DIMS[2]/2, ] = win_var
# output
return out_img.astype('>f4')
You can use scipy.ndimage.generic_filter. I can't test with matlab, but perhaps this gives you what you're looking for:
import numpy as np
import scipy.ndimage as ndimage
subs = 10 # this is the size of the (square) sub-windows
img = np.random.rand(500, 500)
img_std = ndimage.filters.generic_filter(img, np.std, size=subs)
You can make the sub-windows of arbitrary sizes using the footprint keyword. See this question for an example.

Categories

Resources