I have an odd number of subplots like so:
import matplotlib.pyplot as plt
fig, axes = plt.subplots(2, 2, sharex=True)
for i, ax in enumerate(axes.flat):
ax.plot(range(10))
fig.delaxes(axes.flat[-1])
I want them all to have the same x-axis, but easily add the x-ticks back to the plot on the right, since there is no longer a 4th plot.
It seems like there should be an easier/cleaner solution than adding each subplot manually (similar to this answer), but I can't seem to find anything. Thanks.
you can use setp to make the xtick labels visible for ax[0][1] like this
import matplotlib.pyplot as plt
fig, axes = plt.subplots(2, 2, sharex=True)
for i, ax in enumerate(axes.flat):
ax.plot(range(10))
# for matploltib version 2.0.1
plt.setp(axes[0][1].get_xticklabels(), visible=True)
# for matplotlib version 2.1.1
axes[0][1].xaxis.set_tick_params(which='both', labelbottom=True, labeltop=False)
fig.delaxes(axes.flat[-1])
plt.show()
which will result in
Related
The code below produces gaps between the subplots. How do I remove the gaps between the subplots and make the image a tight grid?
import matplotlib.pyplot as plt
for i in range(16):
i = i + 1
ax1 = plt.subplot(4, 4, i)
plt.axis('on')
ax1.set_xticklabels([])
ax1.set_yticklabels([])
ax1.set_aspect('equal')
plt.subplots_adjust(wspace=None, hspace=None)
plt.show()
The problem is the use of aspect='equal', which prevents the subplots from stretching to an arbitrary aspect ratio and filling up all the empty space.
Normally, this would work:
import matplotlib.pyplot as plt
ax = [plt.subplot(2,2,i+1) for i in range(4)]
for a in ax:
a.set_xticklabels([])
a.set_yticklabels([])
plt.subplots_adjust(wspace=0, hspace=0)
The result is this:
However, with aspect='equal', as in the following code:
import matplotlib.pyplot as plt
ax = [plt.subplot(2,2,i+1) for i in range(4)]
for a in ax:
a.set_xticklabels([])
a.set_yticklabels([])
a.set_aspect('equal')
plt.subplots_adjust(wspace=0, hspace=0)
This is what we get:
The difference in this second case is that you've forced the x- and y-axes to have the same number of units/pixel. Since the axes go from 0 to 1 by default (i.e., before you plot anything), using aspect='equal' forces each axis to be a square. Since the figure is not a square, pyplot adds in extra spacing between the axes horizontally.
To get around this problem, you can set your figure to have the correct aspect ratio. We're going to use the object-oriented pyplot interface here, which I consider to be superior in general:
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(8,8)) # Notice the equal aspect ratio
ax = [fig.add_subplot(2,2,i+1) for i in range(4)]
for a in ax:
a.set_xticklabels([])
a.set_yticklabels([])
a.set_aspect('equal')
fig.subplots_adjust(wspace=0, hspace=0)
Here's the result:
You can use gridspec to control the spacing between axes. There's more information here.
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
plt.figure(figsize = (4,4))
gs1 = gridspec.GridSpec(4, 4)
gs1.update(wspace=0.025, hspace=0.05) # set the spacing between axes.
for i in range(16):
# i = i + 1 # grid spec indexes from 0
ax1 = plt.subplot(gs1[i])
plt.axis('on')
ax1.set_xticklabels([])
ax1.set_yticklabels([])
ax1.set_aspect('equal')
plt.show()
Without resorting gridspec entirely, the following might also be used to remove the gaps by setting wspace and hspace to zero:
import matplotlib.pyplot as plt
plt.clf()
f, axarr = plt.subplots(4, 4, gridspec_kw = {'wspace':0, 'hspace':0})
for i, ax in enumerate(f.axes):
ax.grid('on', linestyle='--')
ax.set_xticklabels([])
ax.set_yticklabels([])
plt.show()
plt.close()
Resulting in:
With recent matplotlib versions you might want to try Constrained Layout. This does (or at least did) not work with plt.subplot() however, so you need to use plt.subplots() instead:
fig, axs = plt.subplots(4, 4, constrained_layout=True)
Have you tried plt.tight_layout()?
with plt.tight_layout()
without it:
Or: something like this (use add_axes)
left=[0.1,0.3,0.5,0.7]
width=[0.2,0.2, 0.2, 0.2]
rectLS=[]
for x in left:
for y in left:
rectLS.append([x, y, 0.2, 0.2])
axLS=[]
fig=plt.figure()
axLS.append(fig.add_axes(rectLS[0]))
for i in [1,2,3]:
axLS.append(fig.add_axes(rectLS[i],sharey=axLS[-1]))
axLS.append(fig.add_axes(rectLS[4]))
for i in [1,2,3]:
axLS.append(fig.add_axes(rectLS[i+4],sharex=axLS[i],sharey=axLS[-1]))
axLS.append(fig.add_axes(rectLS[8]))
for i in [5,6,7]:
axLS.append(fig.add_axes(rectLS[i+4],sharex=axLS[i],sharey=axLS[-1]))
axLS.append(fig.add_axes(rectLS[12]))
for i in [9,10,11]:
axLS.append(fig.add_axes(rectLS[i+4],sharex=axLS[i],sharey=axLS[-1]))
If you don't need to share axes, then simply axLS=map(fig.add_axes, rectLS)
Another method is to use the pad keyword from plt.subplots_adjust(), which also accepts negative values:
import matplotlib.pyplot as plt
ax = [plt.subplot(2,2,i+1) for i in range(4)]
for a in ax:
a.set_xticklabels([])
a.set_yticklabels([])
plt.subplots_adjust(pad=-5.0)
Additionally, to remove the white at the outer fringe of all subplots (i.e. the canvas), always save with plt.savefig(fname, bbox_inches="tight").
from matplotlib import pyplot as plt
fig, (ax0, ax1) = plt.subplots(nrows=2, sharex=True)
fig.show()
Returns this figure:
But I want the x-axis labels below the first plot, not the second, like shown below. How can I achieve this?
There is an example in the official reference, so I answered it by referring to it: In the tick parameter, set the bottom label to false.
import matplotlib.pyplot as plt
ax0 = plt.subplot(211)
ax1 = plt.subplot(212, sharex=ax0, sharey=ax0)
#plt.plot([],[])
plt.tick_params('x', labelbottom=False)
#print(ax1.get_xticks())
plt.show()
The answer from #r-beginners brought me to a solution that also works when using the plt.subplots shortcut instead of instantiating each axis separately.
from matplotlib import pyplot as plt
fig, (ax0, ax1) = plt.subplots(nrows=2, sharex=True)
plt.tick_params('x', labelbottom=False, labeltop=True)
fig.show()
he essential part is plt.tick_params which take keyword arguments labeltop or labelbottom (as well as labelleft or labelright for shared axis on several columns) to select / deselect each axis individually.
I am trying to plot a figure containing two subplots, a seaborn heatmap and simple matplotlib lines. However, when sharing the x-axis for both plots, they do not align as can be seen in this figure:
It would seem that the problem is similar to this post, but when displaying ax[0].get_xticks() and ax[1].get_xticks() I get the same positions, so I don't know what to change. And in my picture the the deviation seems to be more than a 0.5 shift.
What am I doing wrong?
The code I used to plot the figure is the following:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
M_1=np.random.random((15,15))
M_2=np.random.random((15,15))
L_1=np.random.random(15)
L_2=np.random.random(15)
x=range(15)
cmap = sns.color_palette("hot", 100)
sns.set(style="white")
fig, ax = plt.subplots(2, 1, sharex='col', figsize=(10, 12))
ax[0].plot(x,L_1,'-', marker='o',color='tab:orange')
sns.heatmap(M_1, cmap=cmap, vmax=np.max(M_1), center=np.max(M_1)/2., square=False, ax=ax[1])
#Mr-T 's comment is spot on. The easiest would be to create the axes beforehand instead of letting heatmap() shrink your axes in order to make room for the colorbar.
There is the added complication that the labels for the heatmap are not actually placed at [0,1,...] but are in the middle of each cell at [0.5, 1.5, ...]. So if you want your upper plot to align with the labels at the bottom (and with the center of each cell), you may have to shift your plot by 0.5 units to the right:
M_1=np.random.random((15,15))
M_2=np.random.random((15,15))
L_1=np.random.random(15)
L_2=np.random.random(15)
x=np.arange(15)
cmap = sns.color_palette("hot", 100)
sns.set(style="white")
fig, ax = plt.subplots(2, 2, sharex='col', gridspec_kw={'width_ratios':[100,5]})
ax[0,1].remove() # remove unused upper right axes
ax[0,0].plot(x+0.5,L_1,'-', marker='o',color='tab:orange')
sns.heatmap(M_1, cmap=cmap, vmax=np.max(M_1), center=np.max(M_1)/2., square=False, ax=ax[1,0], cbar_ax=ax[1,1])
I am having a big plot where I initiated with:
import numpy as np
import matplotlib.pyplot as plt
fig, axs = plt.subplots(5, 4)
And I want to do share-x-axis between column 1 and 2; and do the same between column 3 and 4. However, column 1 and 2 does not share the same axis with column 3 and 4.
I was wondering that would there be anyway to do this, and not sharex=True and sharey=True across all figures?
PS: This tutorial does not help too much, because it is only about sharing x/y within each row/column; they cannot do axis sharing between different rows/columns (unless share them across all axes).
I'm not exactly sure what you want to achieve from your question. However, you can specify per subplot which axis it should share with which subplot when adding a subplot to your figure.
This can be done via:
import matplotlib.pylab as plt
fig = plt.figure()
ax1 = fig.add_subplot(5, 4, 1)
ax2 = fig.add_subplot(5, 4, 2, sharex = ax1)
ax3 = fig.add_subplot(5, 4, 3, sharex = ax1, sharey = ax1)
A slightly limited but much simpler option is available for subplots. The limitation is there for a complete row or column of subplots.
For example, if one wants to have common y axis for all the subplots but common x axis only for individual columns in a 3x2 subplot, one could specify it as:
import matplotlib.pyplot as plt
fig, ax = plt.subplots(3, 2, sharey=True, sharex='col')
One can manually manage axes sharing using a Grouper object, which can be accessed via ax._shared_x_axes and ax._shared_y_axes. For example,
import matplotlib.pyplot as plt
def set_share_axes(axs, target=None, sharex=False, sharey=False):
if target is None:
target = axs.flat[0]
# Manage share using grouper objects
for ax in axs.flat:
if sharex:
target._shared_x_axes.join(target, ax)
if sharey:
target._shared_y_axes.join(target, ax)
# Turn off x tick labels and offset text for all but the bottom row
if sharex and axs.ndim > 1:
for ax in axs[:-1,:].flat:
ax.xaxis.set_tick_params(which='both', labelbottom=False, labeltop=False)
ax.xaxis.offsetText.set_visible(False)
# Turn off y tick labels and offset text for all but the left most column
if sharey and axs.ndim > 1:
for ax in axs[:,1:].flat:
ax.yaxis.set_tick_params(which='both', labelleft=False, labelright=False)
ax.yaxis.offsetText.set_visible(False)
fig, axs = plt.subplots(5, 4)
set_share_axes(axs[:,:2], sharex=True)
set_share_axes(axs[:,2:], sharex=True)
To adjust the spacing between subplots in a grouped manner, please refer to this question.
I used Axes.sharex /sharey in a similar setting
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.sharex.html#matplotlib.axes.Axes.sharex
import matplotlib.pyplot as plt
fig, axd = plt.subplot_mosaic([list(range(3))] +[['A']*3, ['B']*3])
axd[0].plot([0,0.2])
axd['A'].plot([1,2,3])
axd['B'].plot([1,2,3,4,5])
axd['B'].sharex(axd['A'])
for i in [1,2]:
axd[i].sharey(axd[0])
plt.show()
I'm using python + matplotlib and I'm having two plots share an axis. If you try to set graph1.set_xticklabels([]) while sharing an axis, it has no effect because it is shared. Is there a way to share the axis AND be able to hide the x axis of one plot?
This is a common gotcha when using shared axes.
Fortunately, there's a simple fix: use plt.setp(ax.get_xticklabels(), visible=False) to make the labels invisible on just one axis.
This is equivalent to [label.set_visible(False) for label in ax.get_xticklabels()], for whatever it's worth. setp will automatically operate on an iterable of matplotlib objects, as well as individual objects.
As an example:
import matplotlib.pyplot as plt
fig = plt.figure()
ax1 = fig.add_subplot(2,1,1)
ax1.plot(range(10), 'b-')
ax2 = fig.add_subplot(2,1,2, sharex=ax1)
ax2.plot(range(10), 'r-')
plt.setp(ax1.get_xticklabels(), visible=False)
plt.show()
Per a thread on matplotlib-users, you could use
import matplotlib.pyplot as plt
for ax in plt.gcf().axes:
try:
ax.label_outer()
except:
pass
You could use Axes.tick_params():
import matplotlib.pyplot as plt
fig = plt.figure()
ax1 = fig.add_subplot(211)
ax2 = fig.add_subplot(212, sharex=ax1)
ax1.tick_params(labelbottom=False)
You can share the axes during subplot creation with plt.subplots as
fig, axes = plt.subplots(nrows=2, sharex=True)
This will automatically turn the ticklabels for inner axes off.
Complete example:
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, sharex=True)
axes[0].plot([1,2,3])
axes[1].plot([3,2,1])
plt.show()
Unfortunately, I am not allowed to comment on esmit's answer (which is the best solution in my opinion, thanks esmit), so I have to write my comment as a new answer: I put his solution into a simple function
def remove_inner_ticklabels(fig):
for ax in fig.axes:
try:
ax.label_outer()
except:
pass
which you can call before plt.show(). Joe Kington's answer did not work for me for some reason.