Using isin() to determine what should be printed - python

Right now I have two dataframes (data1 and data2)
I would like to print a column of string values in the dataframe called data1, based on whether the ID exists in both data2 and data1.
What I am doing now gives me a boolean list (True or False if the ID exists in the both dataframes but not the column of strings).
print(data2['id'].isin(data1.id).to_string())
yields
0 True
1 True
2 True
3 True
4 True
5 True
Any ideas would be appreciated.
Here is a sample of data1
'user_id', 'id', 'rating', 'unix_timestamp'
196 242 3 881250949
186 302 3 891717742
22 377 1 878887116
And data2 contains something like this
'id', 'title', 'release_date',
'video_release_date', 'imdb_url'
37|Nadja (1994)|01-Jan-1994||http://us.imdb.com/M/title-exact?Nadja%20(1994)|0|0|0|0|0|0|0|0|1|0|0|0|0|0|0|0|0|0|0
38|Net, The (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Net,%20The%20(1995)|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|1|1|0|0
39|Strange Days (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Strange%20Days%20(1995)|0|1|0|0|0|0|1|0|0|0|0|0|0|0|0|1|0|0|0

If all values of ids are unique:
I think you need merge with inner join. For data2 select only id column, on parameter should be omit, because joining on all columns - here only id:
df = pd.merge(data1, data2[['id']])
Sample:
data1 = pd.DataFrame({'id':list('abcdef'),
'B':[4,5,4,5,5,4],
'C':[7,8,9,4,2,3]})
print (data1)
B C id
0 4 7 a
1 5 8 b
2 4 9 c
3 5 4 d
4 5 2 e
5 4 3 f
data2 = pd.DataFrame({'id':list('frcdeg'),
'D':[1,3,5,7,1,0],
'E':[5,3,6,9,2,4],})
print (data2)
D E id
0 1 5 f
1 3 3 r
2 5 6 c
3 7 9 d
4 1 2 e
5 0 4 g
df = pd.merge(data1, data2[['id']])
print (df)
B C id
0 4 9 c
1 5 4 d
2 5 2 e
3 4 3 f
If id are duplicated in one or another Dataframe use another answer, also added similar solutions:
df = data1[data1['id'].isin(set(data1['id']) & set(data2['id']))]
ids = set(data1['id']) & set(data2['id'])
df = data2.query('id in #ids')
df = data1[np.in1d(data1['id'], np.intersect1d(data1['id'], data2['id']))]
Sample:
data1 = pd.DataFrame({'id':list('abcdef'),
'B':[4,5,4,5,5,4],
'C':[7,8,9,4,2,3]})
print (data1)
B C id
0 4 7 a
1 5 8 b
2 4 9 c
3 5 4 d
4 5 2 e
5 4 3 f
data2 = pd.DataFrame({'id':list('fecdef'),
'D':[1,3,5,7,1,0],
'E':[5,3,6,9,2,4],})
print (data2)
D E id
0 1 5 f
1 3 3 e
2 5 6 c
3 7 9 d
4 1 2 e
5 0 4 f
df = data1[data1['id'].isin(set(data1['id']) & set(data2['id']))]
print (df)
B C id
2 4 9 c
3 5 4 d
4 5 2 e
5 4 3 f
EDIT:
You can use:
df = data2.loc[data1['id'].isin(set(data1['id']) & set(data2['id'])), ['title']]
ids = set(data1['id']) & set(data2['id'])
df = data2.query('id in #ids')[['title']]
df = data2.loc[np.in1d(data1['id'], np.intersect1d(data1['id'], data2['id'])), ['title']]

You can compute the set intersection of the two columns -
ids = set(data1['id']).intersection(data2['id'])
Or,
ids = np.intersect1d(data1['id'], data2['id'])
Next, query/filter out relevant rows.
data1.loc[data1['id'].isin(ids), 'id']

Related

Pandas, duplicate a row based on a condition

I have a dataframe like this -
What I want to do is, whenever there is 'X' in Col3, that row should get duplicated and 'X' should be changed to 'Z'. The result must look like this -
I did try a few approaches, but nothing worked!
Can somebody please guide on how to do this.
You can filter first by boolean indexing and set Z to Col3 by DataFrame.assign, join with original with concat, sorting index by DataFrame.sort_index with stabble algo mergesort and last create default RangeIndex by DataFrame.reset_index with drop=True:
df = pd.DataFrame({
'B':[4,5,4,5,5,4],
'C':[7,8,9,4,2,3],
'Col3':list('aXcdXf'),
'D':[1,3,5,7,1,0],
'E':[5,3,6,9,2,4],
'F':list('aaabbb')
})
df = (pd.concat([df, df[df['Col3'].eq('X')].assign(Col3 = 'Z')])
.sort_index(kind='mergesort')
.reset_index(drop=True))
print (df)
B C Col3 D E F
0 4 7 a 1 5 a
1 5 8 X 3 3 a
2 5 8 Z 3 3 a
3 4 9 c 5 6 a
4 5 4 d 7 9 b
5 5 2 X 1 2 b
6 5 2 Z 1 2 b
7 4 3 f 0 4 b

Delete pandas column if column name begins with a number

I have a pandas DataFrame with about 200 columns. Roughly, I want to do this
for col in df.columns:
if col begins with a number:
df.drop(col)
I'm not sure what are the best practices when it comes to handling pandas DataFrames, how should I handle this? Will my pseudocode work, or is it not recommended to modify a pandas dataframe in a for loop?
I think simpliest is select all columns which not starts with number by filter with regex - ^ is for start of string and \D is for not number:
df1 = df.filter(regex='^\D')
Similar alternative:
df1 = df.loc[:, df.columns.str.contains('^\D')]
Or inverse condition and select numbers:
df1 = df.loc[:, ~df.columns.str.contains('^\d')]
df1 = df.loc[:, ~df.columns.str[0].str.isnumeric()]
If want use your pseudocode:
for col in df.columns:
if col[0].isnumeric():
df = df.drop(col, axis=1)
Sample:
df = pd.DataFrame({'2A':list('abcdef'),
'1B':[4,5,4,5,5,4],
'C':[7,8,9,4,2,3],
'D3':[1,3,5,7,1,0],
'E':[5,3,6,9,2,4],
'F':list('aaabbb')})
print (df)
1B 2A C D3 E F
0 4 a 7 1 5 a
1 5 b 8 3 3 a
2 4 c 9 5 6 a
3 5 d 4 7 9 b
4 5 e 2 1 2 b
5 4 f 3 0 4 b
df1 = df.filter(regex='^\D')
print (df1)
C D3 E F
0 7 1 5 a
1 8 3 3 a
2 9 5 6 a
3 4 7 9 b
4 2 1 2 b
5 3 0 4 b
An alternative can be this:
columns = [x for x in df.columns if not x[0].isdigit()]
df = df[columns]

insert a list as row in a dataframe at a specific position

I have a list l=['a', 'b' ,'c']
and a dataframe with columns d,e,f and values are all numbers
How can I insert list l in my dataframe just below the columns.
Setup
df = pd.DataFrame(np.ones((2, 3), dtype=int), columns=list('def'))
l = list('abc')
df
d e f
0 1 1 1
1 1 1 1
Option 1
I'd accomplish this task by adding a level to the columns object
df.columns = pd.MultiIndex.from_tuples(list(zip(df.columns, l)))
df
d e f
a b c
0 1 1 1
1 1 1 1
Option 2
Use a dictionary comprehension passed to the dataframe constructor
pd.DataFrame({(i, j): df[i] for i, j in zip(df, l)})
d e f
a b c
0 1 1 1
1 1 1 1
But if you insist on putting it in the dataframe proper... (keep in mind, this turns the dataframe into dtype object and we lose significant computational efficiencies.)
Alternative 1
pd.DataFrame([l], columns=df.columns).append(df, ignore_index=True)
d e f
0 a b c
1 1 1 1
2 1 1 1
Alternative 2
pd.DataFrame([l] + df.values.tolist(), columns=df.columns)
d e f
0 a b c
1 1 1 1
2 1 1 1
Use pd.concat
In [1112]: df
Out[1112]:
d e f
0 0.517243 0.731847 0.259034
1 0.318821 0.551298 0.773115
2 0.194192 0.707525 0.804102
3 0.945842 0.614033 0.757389
In [1113]: pd.concat([pd.DataFrame([l], columns=df.columns), df], ignore_index=True)
Out[1113]:
d e f
0 a b c
1 0.517243 0.731847 0.259034
2 0.318821 0.551298 0.773115
3 0.194192 0.707525 0.804102
4 0.945842 0.614033 0.757389
Are you looking for append i.e
df = pd.DataFrame([[1,2,3]],columns=list('def'))
I = ['a','b','c']
ndf = df.append(pd.Series(I,index=df.columns.tolist()),ignore_index=True)
Output:
d e f
0 1 2 3
1 a b c
If you want add list to columns for MultiIndex:
df.columns = [df.columns, l]
print (df)
d e f
a b c
0 4 7 1
1 5 8 3
2 4 9 5
3 5 4 7
4 5 2 1
5 4 3 0
print (df.columns)
MultiIndex(levels=[['d', 'e', 'f'], ['a', 'b', 'c']],
labels=[[0, 1, 2], [0, 1, 2]])
If you want add list to specific position pos:
pos = 0
df1 = pd.DataFrame([l], columns=df.columns)
print (df1)
d e f
0 a b c
df = pd.concat([df.iloc[:pos], df1, df.iloc[pos:]], ignore_index=True)
print (df)
d e f
0 a b c
1 4 7 1
2 5 8 3
3 4 9 5
4 5 4 7
5 5 2 1
6 4 3 0
But if append this list to numeric dataframe, get mixed types - numeric with strings, so some pandas functions should failed.
Setup:
df = pd.DataFrame({'d':[4,5,4,5,5,4],
'e':[7,8,9,4,2,3],
'f':[1,3,5,7,1,0]})
print (df)

How to extract rows in a pandas dataframe NOT in a subset dataframe

I have two dataframes. DF and SubDF. SubDF is a subset of DF. I want to extract the rows in DF that are NOT in SubDF.
I tried the following:
DF2 = DF[~DF.isin(SubDF)]
The number of rows are correct and most rows are correct,
ie number of rows in subDF + number of rows in DF2 = number of rows in DF
but I get rows with NaN values that do not exist in the original DF
Not sure what I'm doing wrong.
Note: the original DF does not have any NaN values, and to double check I did DF.dropna() before and the result still produced NaN
You need merge with outer join and boolean indexing, because DataFrame.isin need values and index match:
DF = pd.DataFrame({'A':[1,2,3],
'B':[4,5,6],
'C':[7,8,9],
'D':[1,3,5],
'E':[5,3,6],
'F':[7,4,3]})
print (DF)
A B C D E F
0 1 4 7 1 5 7
1 2 5 8 3 3 4
2 3 6 9 5 6 3
SubDF = pd.DataFrame({'A':[3],
'B':[6],
'C':[9],
'D':[5],
'E':[6],
'F':[3]})
print (SubDF)
A B C D E F
0 3 6 9 5 6 3
#return no match
DF2 = DF[~DF.isin(SubDF)]
print (DF2)
A B C D E F
0 1 4 7 1 5 7
1 2 5 8 3 3 4
2 3 6 9 5 6 3
DF2 = pd.merge(DF, SubDF, how='outer', indicator=True)
DF2 = DF2[DF2._merge == 'left_only'].drop('_merge', axis=1)
print (DF2)
A B C D E F
0 1 4 7 1 5 7
1 2 5 8 3 3 4
Another way, borrowing the setup from #jezrael:
df = pd.DataFrame({'A':[1,2,3],
'B':[4,5,6],
'C':[7,8,9],
'D':[1,3,5],
'E':[5,3,6],
'F':[7,4,3]})
sub = pd.DataFrame({'A':[3],
'B':[6],
'C':[9],
'D':[5],
'E':[6],
'F':[3]})
extract_idx = list(set(df.index) - set(sub.index))
df_extract = df.loc[extract_idx]
The rows may not be sorted in the original df order. If matching order is required:
extract_idx = list(set(df.index) - set(sub.index))
idx_dict = dict(enumerate(df.index))
order_dict = dict(zip(idx_dict.values(), idx_dict.keys()))
df_extract = df.loc[sorted(extract_idx, key=order_dict.get)]

Convert N by N Dataframe to 3 Column Dataframe

I am using Python 2.7 with Pandas on a Windows 10 machine.
I have an n by n Dataframe where:
1) The index represents peoples names
2) The column headers are the same peoples names in the same order
3) Each cell of the Dataframeis the average number of times they email each other each day.
How would I transform that Dataframeinto a Dataframewith 3 columns, where:
1) Column 1 would be the index of the n by n Dataframe
2) Column 2 would be the row headers of the n by n Dataframe
3) Column 3 would be the cell value corresponding to those two names from the index, column header combination from the n by n Dataframe
Edit
Appologies for not providing an example of what I am looking for. I would like to take df1 and turn it into rel_df, from the code below.
import pandas as pd
from itertools import permutations
df1 = pd.DataFrame()
df1['index'] = ['a', 'b','c','d','e']
df1.set_index('index', inplace = True)
df1['a'] = [0,1,2,3,4]
df1['b'] = [1,0,2,3,4]
df1['c'] = [4,1,0,3,4]
df1['d'] = [5,1,2,0,4]
df1['e'] = [7,1,2,3,0]
##df of all relationships to build
flds = pd.Series(SO_df.fld1.unique())
flds = pd.Series(flds.append(pd.Series(SO_df.fld2.unique())).unique())
combos = []
for L in range(0, len(flds)+1):
for subset in permutations(flds, L):
if len(subset) == 2:
combos.append(subset)
if len(subset) > 2:
break
rel_df = pd.DataFrame.from_records(data = combos, columns = ['fld1','fld2'])
rel_df['value'] = [1,4,5,7,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4]
print df1
>>> print df1
a b c d e
index
a 0 1 4 5 7
b 1 0 1 1 1
c 2 2 0 2 2
d 3 3 3 0 3
e 4 4 4 4 0
>>> print rel_df
fld1 fld2 value
0 a b 1
1 a c 4
2 a d 5
3 a e 7
4 b a 1
5 b c 1
6 b d 1
7 b e 1
8 c a 2
9 c b 2
10 c d 2
11 c e 2
12 d a 3
13 d b 3
14 d c 3
15 d e 3
16 e a 4
17 e b 4
18 e c 4
19 e d 4
Use melt:
df1 = df1.reset_index()
pd.melt(df1, id_vars='index', value_vars=df1.columns.tolist()[1:])
(If in your actual code you're explicitly setting the index as you do here, just skip that step rather than doing the reset_index; melt doesn't work on an index.)
# Flatten your dataframe.
df = df1.stack().reset_index()
# Remove duplicates (e.g. fld1 = 'a' and fld2 = 'a').
df = df.loc[df.iloc[:, 0] != df.iloc[:, 1]]
# Rename columns.
df.columns = ['fld1', 'fld2', 'value']
>>> df
fld1 fld2 value
1 a b 1
2 a c 4
3 a d 5
4 a e 7
5 b a 1
7 b c 1
8 b d 1
9 b e 1
10 c a 2
11 c b 2
13 c d 2
14 c e 2
15 d a 3
16 d b 3
17 d c 3
19 d e 3
20 e a 4
21 e b 4
22 e c 4
23 e d 4

Categories

Resources