Storing dynamic data without database - python

I am building a simple Web App for which I want to store 3 variables, which should be available to every user and be stored dynamically.
Specifically I am using Flask. In the past I simply stored the data in text files or pickled them. Although this worked, this seems like an ugly solution and could at least theoretically lead to race condition problems when used by multiple persons.
The better approach would probably be to use a database, but this seems like a bit of an overkill when really the only thing it would store was a single entry in a single table.
Is there a good practice for this kind of task?
Unfortunately I haven't found any appropriate solutions for this task, as the problem doesn't seem very common.

Related

Is there a good way to store a boolean array into a file or database in python?

I am building an image mosaic that detect if the user's selected area are taken or not.
My idea is to store the available_spots in a list, and I would just have to look through the list to check whether a spot is available or not.
The problem is that when I reload the website, avaliable_spots also gets reset to blank list,
so I want to store this array somewhere, that is fast to read and write to.
I am currently thinking about a text file to store this, but that might take forever to read since array length is over 1.4 million. Is there any other solutions that might be better?
You can't store the data in a file for a few reasons: (1) GAE standard won't let you, (2) the data is lost when your server is restarted, and (3) different instances will have different data.
Of course you can and should store the data in a database of your choice. Firestore is likely a better and cheaper option than SQL. It should be fast enough for you and you can implement caching if needed.
You might be able to store the data in a single Firestore entity and consider using compression if you are getting close to the max entity size.
If you want to store into a database you can use the "sqlite3" module.
Is a simple database that gets stored in a file so you dont have to install a database program. Is great for small projects.
If you want to do more complex stuff with databases you can use "sqlalchemy".

Pandas as fast data storage for Flask application

I'm impressed by the speed of running transformations, loading data and ease of use of Pandas and want to leverage all these nice properties (amongst others) to model some large-ish data sets (~100-200k rows, <20 columns). The aim is to work with the data on some computing nodes, but also to provide a view of the data sets in a browser via Flask.
I'm currently using a Postgres database to store the data, but the import (coming from csv files) of the data is slow, tedious and error prone and getting the data out of the database and processing it is not much easier. The data is never going to be changed once imported (no CRUD operations), so I thought it's ideal to store it as several pandas DataFrame (stored in hdf5 format and loaded via pytables).
The question is:
(1) Is this a good idea and what are the things to watch out for? (For instance I don't expect concurrency problems as DataFrames are (should?) be stateless and immutable (taken care of from application-side)). What else needs to be watched out for?
(2) How would I go about caching the data once it's loaded from the hdf5 file into a DataFrame, so it doesn't need to be loaded for every client request (at least the most recent/frequent dataframes). Flask (or werkzeug) has a SimpleCaching class, but, internally, it pickles the data and unpickles the cached data on access. I wonder if this is necessary in my specific case (assuming the cached object is immutable). Also, is such a simple caching method usable when the system gets deployed with Gunicorn (is it possible to have static data (the cache) and can concurrent (different process?) requests access the same cache?).
I realise these are many questions, but before I invest more time and build a proof-of-concept, I thought I get some feedback here. Any thoughts are welcome.
Answers to some aspects of what you're asking for:
It's not quite clear from your description whether you have the tables in your SQL database only, stored as HDF5 files or both. Something to look out for here is that if you use Python 2.x and create the files via pandas' HDFStore class, any strings will be pickled leading to fairly large files. You can also generate pandas DataFrame's directly from SQL queries using read_sql, for example.
If you don't need any relational operations then I would say ditch the postgre server, if it's already set up and you might need that in future keep using the SQL server. The nice thing about the server is that even if you don't expect concurrency issues, it will be handled automatically for you using (Flask-)SQLAlchemy causing you less headache. In general, if you ever expect to add more tables (files), it's less of an issue to have one central database server than maintaining multiple files lying around.
Whichever way you go, Flask-Cache will be your friend, using either a memcached or a redis backend. You can then cache/memoize the function that returns a prepared DataFrame from either SQL or HDF5 file. Importantly, it also let's you cache templates which may play a role in displaying large tables.
You could, of course, also generate a global variable, for example, where you create the Flask app and just import that wherever it's needed. I have not tried this and would thus not recommend it. It might cause all sorts of concurrency issues.

Is it possible to store data from Python in Access file?

Well, I might be doing some work in Python that would end up with hundreds of thousands, maybe millions of rows of data, each with entries in maybe 50 or more columns. I want a way to keep track of this data and work with it. Since I also want to learn Microsoft Access, I suggest putting the data in there. Is there any easy way to do this? I also want to learn SAS, so that would be fine too. Or, is there some other program/method I should know for such a situation?
Thanks for any help!
Yes, you can talk to any ODBC database from Python, and that should include Access. You'll want the "windows" version of Python (which includes stuff like ODBC) from ActiveState.
I'd be more worried about the "millions of rows" in Access, it can get a bit slow on retrieval if you're actually using it for relational tasks (that is, JOINing different tables together).
I'd also take a look at your 50 column tables — sometimes you need 50 columns but more often it means you haven't decomposed your data sufficiently to get it in normal form.
Finally, if you use Python to read and write an Access database I don't know if I'd count that as "learning Access". Really learning Access would be using the front end to create and maintain the database, creating forms and reports in Access (which would not be available from Python) and programming in Visual Basic for Applications (VBA).
I really like SQLite as an embedded database solution, especially from Python, and its SQL dialect is probably "purer" than Access's.
Since I also want to learn Microsoft Access,
Don't waste your time learning Access.
I suggest putting the data in there. Is there any easy way to do this?
ODBC.
Or, is there some other program/method I should know for such a situation?
SQLite and MySQL are far, far better choices than MS-Access.

Dynamically Created Top Articles List in Django?

I'm creating a Django-powered site for my newspaper-ish site. The least obvious and common-sense task that I have come across in getting the site together is how best to generate a "top articles" list for the sidebar of the page.
The first thing that came to mind was some sort of database column that is updated (based on what?) with every view. That seems (to my instincts) ridiculously database intensive and impractical and thus I think I'd like to find another solution.
Thanks all.
I would give celery a try (with django-celery). While it's not so easy to configure and use as cache, it enables you to queue tasks like incrementing counters and do them in background. It could be even combined with cache technique - in views increment counters in cache and define PeriodicTask that will run every now and then, resetting counters and writing them to the database.
I just remembered - I once found this blog entry which provides nice way of incrementing 'viewed_count' (or similar) column in database with AJAX JS call. If you don't have heavy traffic maybe it's good idea?
Also mentioned in this post is django-tracking, but I don't know much about it, I never used it myself (yet).
Premature optimization, first try the db way and then see if it really is too database sensitive. Any decent database has so good caches it probably won't matter very much. And even if it is a problem, take a look at the other db/cache suggestions here.
It is most likely by the way is that you will have many more intensive db queries with each view than a simple view update.
If you do something like sort by top views, it would be fast if you index the view column in the DB. Another option is to only collect the top x articles every hour or so, and toss that value into Django's cache framework.
The nice thing about caching the list is that the algorithm you use to determine top articles can be as complex as you like without hitting the DB hard with every page view. Django's cache framework can use memory, db, or file system. I prefer DB, but many others prefer memory. I believe it uses pickle, so you can also store Python objects directly. It's easy to use, recommended.
An index wouldn't help as them main problem I believe is not so much getting the sorted list as having a DB write with every page view of an article. Another index actually makes that problem worse, albeit only a little.
So I'd go with the cache. I think django's cache shim is a problem here because it requires timeouts on all keys. I'm not sure if that's imposed by memcached, if not then go with redis. Actually just go with redis anyway, the python library is great, I've used it from django projects before, and it has atomic increments and powerful sorting - everything you need.

Reverse Search Best Practices?

I'm making an app that has a need for reverse searches. By this, I mean that users of the app will enter search parameters and save them; then, when any new objects get entered onto the system, if they match the existing search parameters that a user has saved, a notification will be sent, etc.
I am having a hard time finding solutions for this type of problem.
I am using Django and thinking of building the searches and pickling them using Q objects as outlined here: http://www.djangozen.com/blog/the-power-of-q
The way I see it, when a new object is entered into the database, I will have to load every single saved query from the db and somehow run it against this one new object to see if it would match that search query... This doesn't seem ideal - has anyone tackled such a problem before?
At the database level, many databases offer 'triggers'.
Another approach is to have timed jobs that periodically fetch all items from the database that have a last-modified date since the last run; then these get filtered and alerts issued. You can perhaps put some of the filtering into the query statement in the database. However, this is a bit trickier if notifications need to be sent if items get deleted.
You can also put triggers manually into the code that submits data to the database, which is perhaps more flexible and certainly doesn't rely on specific features of the database.
A nice way for the triggers and the alerts to communicate is through message queues - queues such as RabbitMQ and other AMQP implementations will scale with your site.
The amount of effort you use to solve this problem is directly related to the number of stored queries you are dealing with.
Over 20 years ago we handled stored queries by treating them as minidocs and indexing them based on all of the must have and may have terms. A new doc's term list was used as a sort of query against this "database of queries" and that built a list of possibly interesting searches to run, and then only those searches were run against the new docs. This may sound convoluted, but when there are more than a few stored queries (say anywhere from 10,000 to 1,000,000 or more) and you have a complex query language that supports a hybrid of Boolean and similarity-based searching, it substantially reduced the number we had to execute as full-on queries -- often no more that 10 or 15 queries.
One thing that helped was that we were in control of the horizontal and the vertical of the whole thing. We used our query parser to build a parse tree and that was used to build the list of must/may have terms we indexed the query under. We warned the customer away from using certain types of wildcards in the stored queries because it could cause an explosion in the number of queries selected.
Update for comment:
Short answer: I don't know for sure.
Longer answer: We were dealing with a custom built text search engine and part of it's query syntax allowed slicing the doc collection in certain ways very efficiently, with special emphasis on date_added. We played a lot of games because we were ingesting 4-10,000,000 new docs a day and running them against up to 1,000,000+ stored queries on a DEC Alphas with 64MB of main memory. (This was in the late 80's/early 90's.)
I'm guessing that filtering on something equivalent to date_added could be done used in combination the date of the last time you ran your queries, or maybe the highest id at last query run time. If you need to re-run the queries against a modified record you could use its id as part of the query.
For me to get any more specific, you're going to have to get a lot more specific about exactly what problem you are trying to solve and the scale of the solution you are trying accomplishing.
If you stored the type(s) of object(s) involved in each stored search as a generic relation, you could add a post-save signal to all involved objects. When the signal fires, it looks up only the searches that involve its object type and runs those. That probably will still run into scaling issues if you have a ton of writes to the db and a lot of saved searches, but it would be a straightforward Django approach.

Categories

Resources