append dictionary to data frame - python

I have a function, which returns a dictionary like this:
{'truth': 185.179993, 'day1': 197.22307753038834, 'day2': 197.26118010160317, 'day3': 197.19846975345905, 'day4': 197.1490578795196, 'day5': 197.37179265011116}
I am trying to append this dictionary to a dataframe like so:
output = pd.DataFrame()
output.append(dictionary, ignore_index=True)
print(output.head())
Unfortunately, the printing of the dataframe results in an empty dataframe. Any ideas?

You don't assign the value to the result.
output = pd.DataFrame()
output = output.append(dictionary, ignore_index=True)
print(output.head())

The previous answer (user alex, answered Aug 9 2018 at 20:09) now triggers a warning saying that appending to a dataframe will be deprecated in a future version.
A way to do it is to transform the dictionary to a dataframe and the concatenate the dataframes:
output = pd.DataFrame()
df_dictionary = pd.DataFrame([dictionary])
output = pd.concat([output, df_dictionary], ignore_index=True)
print(output.head())

I always do it this way because this syntax is less confusing for me.
I believe concat method is recommended though.
df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
>>>df
col1 col2
0 1 3
1 2 4
d={'col1': 5, 'col2': 6}
df.loc[len(df)]=d
>>>df
col1 col2
0 1 3
1 2 4
2 5 6
Note that iloc method won't work this way.

Related

pandas combine nested dataframes into one single dataframe

I have a dataframe, where in one column (we'll call it info) all the cells/rows contain another dataframe inside. I want to loop through all the rows in this column and literally stack the nested dataframes on top of each other, because they all have the same columns
How would I go about this?
You could try as follows:
import pandas as pd
length=5
# some dfs
nested_dfs = [pd.DataFrame({'a': [*range(length)],
'b': [*range(length)]}) for x in range(length)]
print(nested_dfs[0])
a b
0 0 0
1 1 1
2 2 2
3 3 3
4 4 4
# df with nested_dfs in info
df = pd.DataFrame({'info_col': nested_dfs})
# code to be implemented
lst_dfs = df['info_col'].values.tolist()
df_final = pd.concat(lst_dfs,axis=0, ignore_index=True)
df_final.tail()
a b
20 0 0
21 1 1
22 2 2
23 3 3
24 4 4
This method should be a bit faster than the solution offered by nandoquintana, which also works.
Incidentally, it is ill advised to name a df column info. This is because df.info is actually a function. E.g., normally df['col_name'].values.tolist() can also be written as df.col_name.values.tolist(). However, if you try this with df.info.values.tolist(), you will run into an error:
AttributeError: 'function' object has no attribute 'values'
You also run the risk of overwriting the function if you start assigning values to your column on top of doing something which you probably don't want to do. E.g.:
print(type(df.info))
<class 'method'>
df.info=1
# column is unaffected, you just create an int variable
print(type(df.info))
<class 'int'>
# but:
df['info']=1
# your column now has all 1's
print(type(df['info']))
<class 'pandas.core.series.Series'>
This is the solution that I came up with, although it's not the fastest which is why I am still leaving the question unanswered
df1 = pd.DataFrame()
for frame in df['Info'].tolist():
df1 = pd.concat([df1, frame], axis=0).reset_index(drop=True)
Our dataframe has three columns (col1, col2 and info).
In info, each row has a nested df as value.
import pandas as pd
nested_d1 = {'coln1': [11, 12], 'coln2': [13, 14]}
nested_df1 = pd.DataFrame(data=nested_d1)
nested_d2 = {'coln1': [15, 16], 'coln2': [17, 18]}
nested_df2 = pd.DataFrame(data=nested_d2)
d = {'col1': [1, 2], 'col2': [3, 4], 'info': [nested_df1, nested_df2]}
df = pd.DataFrame(data=d)
We could combine all nested dfs rows appending them to a list (as nested dfs schema is constant) and concatenating them later.
nested_dfs = []
for index, row in df.iterrows():
nested_dfs.append(row['info'])
result = pd.concat(nested_dfs, sort=False).reset_index(drop=True)
print(result)
This would be the result:
coln1 coln2
0 11 13
1 12 14
2 15 17
3 16 18

Pandas: Sort by sum of 2 columns

I have a DataFrame:
COL1 COL2
1 1
3 1
1 3
I need to sort by COL1 + COL2.
key=lambda col: f(col) argument-function of sort_values(...) lets you sort by a changed column but in the described case I need to sort on the basis of 2 columns. So, it would be nice if there were an opportunity to provide a key argument-function for 2 or more columns but I don't know whether such a one exists.
So, how can I sort its rows by sum COL1 + COL2?
Thank you for your time!
Assuming a unique index, you can also conveniently use the key parameter of sort_values to pass a callable to apply to the by column. Here we can add the other column:
df.sort_values(by='COL1', key=df['COL2'].add)
We can even generalize to any number of columns using sort_index:
df.sort_index(key=df.sum(1).get)
Output:
COL1 COL2
0 1 1
2 1 3
1 3 2
Used input:
data = {"COL1": [1, 3, 1], "COL2": [1, 2, 3]}
df = pd.DataFrame(data)
This does the trick:
data = {"Column 1": [1, 3, 1], "Column 2": [1, 2, 3]}
df = pd.DataFrame(data)
sorted_indices = (df["Column 1"] + df["Column 2"]).sort_values().index
df.loc[sorted_indices, :]
I just created a series that has the sum of both the columns, sorted it, got the sorted indices, and printed those indices out for the dataframe.
(I changed the data a little so you can see the sorting in action. Using the data you provided, you wouldn't have been able to see the sorted data as it would have been the same as the original one.)

Create Dataframe based on one column Pandas

Apologies if this is a repeat question, I searched SO for awhile and, as simple as a question that it is, I couldn't find a similar one. I am looking to simply create one data frame (5x3 in my case) based off of one column in my Pandas dataframe. I've tried both pd.DataFrame and pd.concat and neither have seemed to work. Example below:
df = pd.DataFrame([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15])
#using pd.DataFrame
table_data = {'Column1': df.iloc[0:5,0],
'Column2': df.iloc[5:10,0],
'Column3': df.iloc[10:15,0]}
pd.DataFrame(table_data)
#different method using pd.DataFrame
pd.DataFrame([df.iloc[0:5,0],
df.iloc[5:10,0],
df.iloc[10:15,0]],
columns = ['Column1', 'Column2', 'Column3'])
#using pd.concat
pd.concat([df.iloc[0:5,0], df.iloc[5:10,0], df.iloc[10:15,0]],
axis=1, keys=['Column1', 'Column2', 'Column3'])
Note that my actual starting data frame has more than just 1 column. The issues seem to be happening when I use indexing as opposed to simply hard coding the numbers that should be in each column. This seems like such a simple thing to do yet I can't seem to find anywhere how to solve it. Any help appreciated.
Like this:
In [591]: import numpy as np
In [585]: d = pd.DataFrame()
In [553]: df_split = np.array_split(df, 5) ## Split df into equal parts of 5 rows each
In [586]: for i in df_split:
...: d = pd.concat([d,i.reset_index(drop=True)], axis=1)
...:
In [588]: d.columns = ['Col1', 'Col2', 'Col3']
In [589]: d
Out[589]:
Col1 Col2 Col3
0 1 6 11
1 2 7 12
2 3 8 13
3 4 9 14
4 5 10 15

Pandas DataFrame filter

My question is about the pandas.DataFrame.filter command. It seems that pandas creates a copy of the data frame to write any changes. How am I able to write on the data frame itself?
In other words:
d = {'col1': [1, 2], 'col2': [3, 4]}
df = pd.DataFrame(data=d)
df.filter(regex='col1').iloc[0]=10
Output:
col1 col2
0 1 3
1 2 4
Desired Output:
col1 col2
0 10 3
1 2 4
I think you need extract columns names and then use loc or iloc functions:
cols = df.filter(regex='col1').columns
df.loc[0, cols]=10
Or:
df.iloc[0, df.columns.get_indexer(cols)] = 10
print (df)
col1 col2
0 10 3
1 2 4
You cannnot use filter function, because subset returns a Series/DataFrame which may have its data as a view. That's why SettingWithCopyWarning is possible there (or raise if you set the option).

How to convert data of type Panda to Panda.Dataframe?

I have a object of which type is Panda and the print(object) is giving below output
print(type(recomen_total))
print(recomen_total)
Output is
<class 'pandas.core.frame.Pandas'>
Pandas(Index=12, instrument_1='XXXXXX', instrument_2='XXXX', trade_strategy='XXX', earliest_timestamp='2016-08-02T10:00:00+0530', latest_timestamp='2016-08-02T10:00:00+0530', xy_signal_count=1)
I want to convert this obejct in pd.DataFrame, how i can do it ?
i tried pd.DataFrame(object), from_dict also , they are throwing error
Interestingly, it will not convert to a dataframe directly but to a series. Once this is converted to a series use the to_frame method of series to convert it to a DataFrame
import pandas as pd
df = pd.DataFrame({'col1': [1, 2], 'col2': [0.1, 0.2]},
index=['a', 'b'])
for row in df.itertuples():
print(pd.Series(row).to_frame())
Hope this helps!!
EDIT
In case you want to save the column names use the _asdict() method like this:
import pandas as pd
df = pd.DataFrame({'col1': [1, 2], 'col2': [0.1, 0.2]},
index=['a', 'b'])
for row in df.itertuples():
d = dict(row._asdict())
print(pd.Series(d).to_frame())
Output:
0
Index a
col1 1
col2 0.1
0
Index b
col1 2
col2 0.2
To create new DataFrame from itertuples namedtuple you can use list() or Series too:
import pandas as pd
# source DataFrame
df = pd.DataFrame({'a': [1,2], 'b':[3,4]})
# empty DataFrame
df_new_fromAppend = pd.DataFrame(columns=['x','y'], data=None)
for r in df.itertuples():
# create new DataFrame from itertuples() via list() ([1:] for skipping the index):
df_new_fromList = pd.DataFrame([list(r)[1:]], columns=['c','d'])
# or create new DataFrame from itertuples() via Series (drop(0) to remove index, T to transpose column to row)
df_new_fromSeries = pd.DataFrame(pd.Series(r).drop(0)).T
# or use append() to insert row into existing DataFrame ([1:] for skipping the index):
df_new_fromAppend.loc[df_new_fromAppend.shape[0]] = list(r)[1:]
print('df_new_fromList:')
print(df_new_fromList, '\n')
print('df_new_fromSeries:')
print(df_new_fromSeries, '\n')
print('df_new_fromAppend:')
print(df_new_fromAppend, '\n')
Output:
df_new_fromList:
c d
0 2 4
df_new_fromSeries:
1 2
0 2 4
df_new_fromAppend:
x y
0 1 3
1 2 4
To omit index, use param index=False (but I mostly need index for the iteration)
for r in df.itertuples(index=False):
# the [1:] needn't be used, for example:
df_new_fromAppend.loc[df_new_fromAppend.shape[0]] = list(r)
The following works for me:
import pandas as pd
df = pd.DataFrame({'col1': [1, 2], 'col2': [0.1, 0.2]}, index=['a', 'b'])
for row in df.itertuples():
row_as_df = pd.DataFrame.from_records([row], columns=row._fields)
print(row_as_df)
The result is:
Index col1 col2
0 a 1 0.1
Index col1 col2
0 b 2 0.2
Sadly, AFAIU, there's no simple way to keep column names, without explicitly utilizing "protected attributes" such as _fields.
With some tweaks in #Igor's answer
I concluded with this satisfactory code which preserved column names and used as less of pandas code as possible.
import pandas as pd
df = pd.DataFrame({'col1': [1, 2], 'col2': [0.1, 0.2]})
# Or initialize another dataframe above
# Get list of column names
column_names = df.columns.values.tolist()
filtered_rows = []
for row in df.itertuples(index=False):
# Some code logic to filter rows
filtered_rows.append(row)
# Convert pandas.core.frame.Pandas to pandas.core.frame.Dataframe
# Combine filtered rows into a single dataframe
concatinated_df = pd.DataFrame.from_records(filtered_rows, columns=column_names)
concatinated_df.to_csv("path_to_csv", index=False)
The result is a csv containing:
col1 col2
1 0.1
2 0.2
To convert a list of objects returned by Pandas .itertuples to a DataFrame, while preserving the column names:
# Example source DF
data = [['cheetah', 120], ['human', 44.72], ['dragonfly', 54]]
source_df = pd.DataFrame(data, columns=['animal', 'top_speed'])
animal top_speed
0 cheetah 120.00
1 human 44.72
2 dragonfly 54.00
Since Pandas does not recommended building DataFrames by adding single rows in a for loop, we will iterate and build the DataFrame at the end:
WOW_THAT_IS_FAST = 50
list_ = list()
for animal in source_df.itertuples(index=False, name='animal'):
if animal.top_speed > 50:
list_.append(animal)
Now build the DF in a single command and without manually recreating the column names.
filtered_df = pd.DataFrame(list_)
animal top_speed
0 cheetah 120.00
2 dragonfly 54.00

Categories

Resources